Design of robust fractional-order controller using the Bode ideal transfer function approach in IMC paradigm

Author(s):  
Sahaj Saxena ◽  
Yogesh V. Hote
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuhuan Wen ◽  
Xiao Chen ◽  
Yongsheng Zhao ◽  
Ahmad B. Rad ◽  
Kamal Mohammed Othman ◽  
...  

We present a fractional order PI controller (FOPI) with SLAM method, and the proposed method is used in the simulation of navigation of NAO humanoid robot from Aldebaran. We can discretize the transfer function by the Al-Alaoui generating function and then get the FOPI controller by Power Series Expansion (PSE). FOPI can be used as a correction part to reduce the accumulated error of SLAM. In the FOPI controller, the parameters (Kp,Ki,  and  α) need to be tuned to obtain the best performance. Finally, we compare the results of position without controller and with PI controller, FOPI controller. The simulations show that the FOPI controller can reduce the error between the real position and estimated position. The proposed method is efficient and reliable for NAO navigation.


Author(s):  
Sateesh K. Vavilala ◽  
Vinopraba Thirumavalavan

<div data-canvas-width="397.2227827050999">This paper proposes a fractional order controller (FOC) for the level control problem of the coupled tank system, using the desired time domain specifications. The coupled tank system is used in the chemical industries for the storage and mixing of liquids. The FOC is designed analytically using the direct synthesis method. In the direct synthesis method, the Bode's ideal loop transfer function is chosen as the desired transfer function. Bode's loop transfer function has the advantages like robustness to system gain variations, constant phase and very high gain margin. Performance of the proposed controller is compared with the state of the art literature. Simulation results showed that the proposed controller has the least peak overshoot. The robust performance of the proposed controller is also the best. Robust stability of the system with the proposed controller is verified, and the system is found to be robustly stable.</div>


2021 ◽  
Vol 11 (2) ◽  
pp. 26
Author(s):  
Rafailia Malatesta ◽  
Stavroula Kapoulea ◽  
Costas Psychalinos ◽  
Ahmed S. Elwakil

Fractional-order controllers have gained significant research interest in various practical applications due to the additional degrees of freedom offered in their tuning process. The main contribution of this work is the analog implementation, for the first time in the literature, of a fractional-order controller with a transfer function that is not directly constructed from terms of the fractional-order Laplacian operator. This is achieved using Padé approximation, and the resulting integer-order transfer function is implemented using operational transconductance amplifiers as active elements. Post-layout simulation results verify the validity of the introduced procedure.


2008 ◽  
Vol 42 (6-8) ◽  
pp. 999-1014 ◽  
Author(s):  
Abdelbaki Djouambi ◽  
Abdelfatah Charef ◽  
Alina Voda-Besancon

Sign in / Sign up

Export Citation Format

Share Document