Fundamental Solutions of the Cauchy Problem for Invariant Λ(µ)-Hyperbolic Operators on Riemannian Manifolds

2005 ◽  
Vol 8 (2) ◽  
pp. 223-232
Author(s):  
I. M. Konet
2014 ◽  
Vol 11 (01) ◽  
pp. 185-213 ◽  
Author(s):  
TATSUO NISHITANI

We study differential operators of order 2 and establish new energy estimates which ensure that the micro supports of solutions to the Cauchy problem propagate with finite speed. We then study the Cauchy problem for non-effectively hyperbolic operators with no null bicharacteristic tangent to the doubly characteristic set and with zero positive trace. By checking the energy estimates, we ensure the propagation with finite speed of the micro supports of solutions, and we prove that the Cauchy problem for such non-effectively hyperbolic operators is C∞ well-posed if and only if the Levi condition holds.


2019 ◽  
Vol 27 (6) ◽  
pp. 815-834
Author(s):  
Yulia Shefer ◽  
Alexander Shlapunov

AbstractWe consider the ill-posed Cauchy problem in a bounded domain{\mathcal{D}}of{\mathbb{R}^{n}}for an elliptic differential operator{\mathcal{A}(x,\partial)}with data on a relatively open subsetSof the boundary{\partial\mathcal{D}}. We do it in weighted Sobolev spaces{H^{s,\gamma}(\mathcal{D})}containing the elements with prescribed smoothness{s\in\mathbb{N}}and growth near{\partial S}in{\mathcal{D}}, controlled by a real number γ. More precisely, using proper (left) fundamental solutions of{\mathcal{A}(x,\partial)}, we obtain a Green-type integral formula for functions from{H^{s,\gamma}(\mathcal{D})}. Then a Neumann-type series, constructed with the use of iterations of the (bounded) integral operators applied to the data, gives a solution to the Cauchy problem in{H^{s,\gamma}(\mathcal{D})}whenever this solution exists.


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 2040035-2040036
Author(s):  
Takashi Ohe ◽  
Katsu Yamatani ◽  
Kohzaburo Ohnaka

Sign in / Sign up

Export Citation Format

Share Document