scholarly journals An empirical study of derivative-free-optimization algorithms for targeted black-box attacks in deep neural networks

Author(s):  
Giuseppe Ughi ◽  
Vinayak Abrol ◽  
Jared Tanner

AbstractWe perform a comprehensive study on the performance of derivative free optimization (DFO) algorithms for the generation of targeted black-box adversarial attacks on Deep Neural Network (DNN) classifiers assuming the perturbation energy is bounded by an $$\ell _\infty$$ ℓ ∞ constraint and the number of queries to the network is limited. This paper considers four pre-existing state-of-the-art DFO-based algorithms along with a further developed algorithm built on BOBYQA, a model-based DFO method. We compare these algorithms in a variety of settings according to the fraction of images that they successfully misclassify given a maximum number of queries to the DNN. The experiments disclose how the likelihood of finding an adversarial example depends on both the algorithm used and the setting of the attack; algorithms limiting the search of adversarial example to the vertices of the $$\ell ^\infty$$ ℓ ∞ constraint work particularly well without structural defenses, while the presented BOBYQA based algorithm works better for especially small perturbation energies. This variance in performance highlights the importance of new algorithms being compared to the state-of-the-art in a variety of settings, and the effectiveness of adversarial defenses being tested using as wide a range of algorithms as possible.

Author(s):  
Guiying Li ◽  
Chao Qian ◽  
Chunhui Jiang ◽  
Xiaofen Lu ◽  
Ke Tang

Layer-wise magnitude-based pruning (LMP) is a very popular method for deep neural network (DNN) compression. However, tuning the layer-specific thresholds is a difficult task, since the space of threshold candidates is exponentially large and the evaluation is very expensive. Previous methods are mainly by hand and require expertise. In this paper, we propose an automatic tuning approach based on optimization, named OLMP. The idea is to transform the threshold tuning problem into a constrained optimization problem (i.e., minimizing the size of the pruned model subject to a constraint on the accuracy loss), and then use powerful derivative-free optimization algorithms to solve it. To compress a trained DNN, OLMP is conducted within a new iterative pruning and adjusting pipeline. Empirical results show that OLMP can achieve the best pruning ratio on LeNet-style models (i.e., 114 times for LeNet-300-100 and 298 times for LeNet-5) compared with some state-of-the- art DNN pruning methods, and can reduce the size of an AlexNet-style network up to 82 times without accuracy loss.


Author(s):  
Xiaofei Xie ◽  
Lei Ma ◽  
Haijun Wang ◽  
Yuekang Li ◽  
Yang Liu ◽  
...  

The platform migration and customization have become an indispensable process of deep neural network (DNN) development lifecycle. A high-precision but complex DNN trained in the cloud on massive data and powerful GPUs often goes through an optimization phase (e.g, quantization, compression) before deployment to a target device (e.g, mobile device). A test set that effectively uncovers the disagreements of a DNN and its optimized variant provides certain feedback to debug and further enhance the optimization procedure. However, the minor inconsistency between a DNN and its optimized version is often hard to detect and easily bypasses the original test set. This paper proposes DiffChaser, an automated black-box testing framework to detect untargeted/targeted disagreements between version variants of a DNN. We demonstrate 1) its effectiveness by comparing with the state-of-the-art techniques, and 2) its usefulness in real-world DNN product deployment involved with quantization and optimization.


2019 ◽  
Vol 86 (7-8) ◽  
pp. 404-412 ◽  
Author(s):  
Katharina Weitz ◽  
Teena Hassan ◽  
Ute Schmid ◽  
Jens-Uwe Garbas

AbstractDeep neural networks are successfully used for object and face recognition in images and videos. In order to be able to apply such networks in practice, for example in hospitals as a pain recognition tool, the current procedures are only suitable to a limited extent. The advantage of deep neural methods is that they can learn complex non-linear relationships between raw data and target classes without limiting themselves to a set of hand-crafted features provided by humans. However, the disadvantage is that due to the complexity of these networks, it is not possible to interpret the knowledge that is stored inside the network. It is a black-box learning procedure. Explainable Artificial Intelligence (AI) approaches mitigate this problem by extracting explanations for decisions and representing them in a human-interpretable form. The aim of this paper is to investigate the explainable AI methods Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME). These approaches are applied to explain how a deep neural network distinguishes facial expressions of pain from facial expressions of emotions such as happiness and disgust.


Author(s):  
Chaowei Xiao ◽  
Bo Li ◽  
Jun-yan Zhu ◽  
Warren He ◽  
Mingyan Liu ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial exam- ples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply Adv- GAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.


2021 ◽  
Vol 3 (4) ◽  
pp. 966-989
Author(s):  
Vanessa Buhrmester ◽  
David Münch ◽  
Michael Arens

Deep Learning is a state-of-the-art technique to make inference on extensive or complex data. As a black box model due to their multilayer nonlinear structure, Deep Neural Networks are often criticized as being non-transparent and their predictions not traceable by humans. Furthermore, the models learn from artificially generated datasets, which often do not reflect reality. By basing decision-making algorithms on Deep Neural Networks, prejudice and unfairness may be promoted unknowingly due to a lack of transparency. Hence, several so-called explanators, or explainers, have been developed. Explainers try to give insight into the inner structure of machine learning black boxes by analyzing the connection between the input and output. In this survey, we present the mechanisms and properties of explaining systems for Deep Neural Networks for Computer Vision tasks. We give a comprehensive overview about the taxonomy of related studies and compare several survey papers that deal with explainability in general. We work out the drawbacks and gaps and summarize further research ideas.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


2019 ◽  
Vol 29 (4) ◽  
pp. 3012-3035 ◽  
Author(s):  
Giampaolo Liuzzi ◽  
Stefano Lucidi ◽  
Francesco Rinaldi ◽  
Luis Nunes Vicente

Sign in / Sign up

Export Citation Format

Share Document