scholarly journals Generating Adversarial Examples with Adversarial Networks

Author(s):  
Chaowei Xiao ◽  
Bo Li ◽  
Jun-yan Zhu ◽  
Warren He ◽  
Mingyan Liu ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial exam- ples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply Adv- GAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Ruoxi Qin ◽  
Linyuan Wang ◽  
Wanting Yu ◽  
...  

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.


Author(s):  
Yao Ni ◽  
Dandan Song ◽  
Xi Zhang ◽  
Hao Wu ◽  
Lejian Liao

Generative adversarial networks (GANs) have shown impressive results, however, the generator and the discriminator are optimized in finite parameter space which means their performance still need to be improved. In this paper, we propose a novel approach of adversarial training between one generator and an exponential number of critics which are sampled from the original discriminative neural network via dropout. As discrepancy between outputs of different sub-networks of a same sample can measure the consistency of these critics, we encourage the critics to be consistent to real samples and inconsistent to generated samples during training, while the generator is trained to generate consistent samples for different critics. Experimental results demonstrate that our method can obtain state-of-the-art Inception scores of 9.17 and 10.02 on supervised CIFAR-10 and unsupervised STL-10 image generation tasks, respectively, as well as achieve competitive semi-supervised classification results on several benchmarks. Importantly, we demonstrate that our method can maintain stability in training and alleviate mode collapse.


2019 ◽  
Vol 2019 (1) ◽  
pp. 133-152 ◽  
Author(s):  
Jamie Hayes ◽  
Luca Melis ◽  
George Danezis ◽  
Emiliano De Cristofaro

Abstract Generative models estimate the underlying distribution of a dataset to generate realistic samples according to that distribution. In this paper, we present the first membership inference attacks against generative models: given a data point, the adversary determines whether or not it was used to train the model. Our attacks leverage Generative Adversarial Networks (GANs), which combine a discriminative and a generative model, to detect overfitting and recognize inputs that were part of training datasets, using the discriminator’s capacity to learn statistical differences in distributions. We present attacks based on both white-box and black-box access to the target model, against several state-of-the-art generative models, over datasets of complex representations of faces (LFW), objects (CIFAR-10), and medical images (Diabetic Retinopathy). We also discuss the sensitivity of the attacks to different training parameters, and their robustness against mitigation strategies, finding that defenses are either ineffective or lead to significantly worse performances of the generative models in terms of training stability and/or sample quality.


Author(s):  
Zhenyu Wu ◽  
Zhaowen Wang ◽  
Ye Yuan ◽  
Jianming Zhang ◽  
Zhangyang Wang ◽  
...  

Generative adversarial networks (GANs) nowadays are capable of producing images of incredible realism. Two concerns raised are whether the state-of-the-art GAN’s learned distribution still suffers from mode collapse and what to do if so. Existing diversity tests of samples from GANs are usually conducted qualitatively on a small scale and/or depend on the access to original training data as well as the trained model parameters. This article explores GAN intra-mode collapse and calibrates that in a novel black-box setting: access to neither training data nor the trained model parameters is assumed. The new setting is practically demanded yet rarely explored and significantly more challenging. As a first stab, we devise a set of statistical tools based on sampling that can visualize, quantify, and rectify intra-mode collapse . We demonstrate the effectiveness of our proposed diagnosis and calibration techniques, via extensive simulations and experiments, on unconditional GAN image generation (e.g., face and vehicle). Our study reveals that the intra-mode collapse is still a prevailing problem in state-of-the-art GANs and the mode collapse is diagnosable and calibratable in black-box settings. Our codes are available at https://github.com/VITA-Group/BlackBoxGANCollapse .


2021 ◽  
pp. 1-11
Author(s):  
Haoran Wu ◽  
Fazhi He ◽  
Yansong Duan ◽  
Xiaohu Yan

Pose transfer, which synthesizes a new image of a target person in a novel pose, is valuable in several applications. Generative adversarial networks (GAN) based pose transfer is a new way for person re-identification (re-ID). Typical perceptual metrics, like Detection Score (DS) and Inception Score (IS), were employed to assess the visual quality after generation in pose transfer task. Thus, the existing GAN-based methods do not directly benefit from these metrics which are highly associated with human ratings. In this paper, a perceptual metrics guided GAN (PIGGAN) framework is proposed to intrinsically optimize generation processing for pose transfer task. Specifically, a novel and general model-Evaluator that matches well the GAN is designed. Accordingly, a new Sort Loss (SL) is constructed to optimize the perceptual quality. Morevover, PIGGAN is highly flexible and extensible and can incorporate both differentiable and indifferentiable indexes to optimize the attitude migration process. Extensive experiments show that PIGGAN can generate photo-realistic results and quantitatively outperforms state-of-the-art (SOTA) methods.


Author(s):  
Xianwen Yu ◽  
Xiaoning Zhang ◽  
Yang Cao ◽  
Min Xia

Recently, Variational Autoencoders (VAEs) have been successfully applied to collaborative filtering for implicit feedback. However, the performance of the resulting model depends a lot on the expressiveness of the inference model and the latent representation is often too constrained to be expressive enough to capture the true posterior distribution. In this paper, a novel framework named VAEGAN is proposed to address the above issue. In VAEGAN, we first introduce Adversarial Variational Bayes (AVB) to train Variational Autoencoders with arbitrarily expressive inference model. By utilizing Generative Adversarial Networks (GANs) for implicit variational inference, the inference model provides better approximation to the posterior and maximum-likelihood assignment. Then the performance of our model is further improved by introducing an auxiliary discriminative network using adversarial training to achieve high accuracy in recommendation. Furthermore, contractive loss is added to the classical reconstruction cost function as a penalty term to yield robust features and improve the generalization performance. Finally, we show that the performance of our proposed VAEGAN significantly outperforms state-of-the-art baselines on several real-world datasets.


Author(s):  
Aishan Liu ◽  
Xianglong Liu ◽  
Jiaxin Fan ◽  
Yuqing Ma ◽  
Anlan Zhang ◽  
...  

Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Recently, adversarial patch, with noise confined to a small and localized patch, emerged for its easy accessibility in real-world. However, existing attack strategies are still far from generating visually natural patches with strong attacking ability, since they often ignore the perceptual sensitivity of the attacked network to the adversarial patch, including both the correlations with the image context and the visual attention. To address this problem, this paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch. To improve the visual fidelity, we treat the patch generation as a patch-to-patch translation via an adversarial process, feeding any types of seed patch and outputting the similar adversarial patch with high perceptual correlation with the attacked image. To further enhance the attacking ability, an attention mechanism coupled with adversarial generation is introduced to predict the critical attacking areas for placing the patches, which can help producing more realistic and aggressive patches. Extensive experiments under semi-whitebox and black-box settings on two large-scale datasets GTSRB and ImageNet demonstrate that the proposed PS-GAN outperforms state-of-the-art adversarial patch attack methods.


2021 ◽  
Vol 15 ◽  
Author(s):  
Pengfei Xie ◽  
Shuhao Shi ◽  
Shuai Yang ◽  
Kai Qiao ◽  
Ningning Liang ◽  
...  

Deep neural networks (DNNs) are proven vulnerable to attack against adversarial examples. Black-box transfer attacks pose a massive threat to AI applications without accessing target models. At present, the most effective black-box attack methods mainly adopt data enhancement methods, such as input transformation. Previous data enhancement frameworks only work on input transformations that satisfy accuracy or loss invariance. However, it does not work for other transformations that do not meet the above conditions, such as the transformation which will lose information. To solve this problem, we propose a new noise data enhancement framework (NDEF), which only transforms adversarial perturbation to avoid the above issues effectively. In addition, we introduce random erasing under this framework to prevent the over-fitting of adversarial examples. Experimental results show that the black-box attack success rate of our method Random Erasing Iterative Fast Gradient Sign Method (REI-FGSM) is 4.2% higher than DI-FGSM in six models on average and 6.6% higher than DI-FGSM in three defense models. REI-FGSM can combine with other methods to achieve excellent performance. The attack performance of SI-FGSM can be improved by 22.9% on average when combined with REI-FGSM. Besides, our combined version with DI-TI-MI-FGSM, i.e., DI-TI-MI-REI-FGSM can achieve an average attack success rate of 97.0% against three ensemble adversarial training models, which is greater than the current gradient iterative attack method. We also introduce Gaussian blur to prove the compatibility of our framework.


2021 ◽  
Vol 11 (3) ◽  
pp. 1093
Author(s):  
Jeonghyun Lee ◽  
Sangkyun Lee

Convolutional neural networks (CNNs) have achieved tremendous success in solving complex classification problems. Motivated by this success, there have been proposed various compression methods for downsizing the CNNs to deploy them on resource-constrained embedded systems. However, a new type of vulnerability of compressed CNNs known as the adversarial examples has been discovered recently, which is critical for security-sensitive systems because the adversarial examples can cause malfunction of CNNs and can be crafted easily in many cases. In this paper, we proposed a compression framework to produce compressed CNNs robust against such adversarial examples. To achieve the goal, our framework uses both pruning and knowledge distillation with adversarial training. We formulate our framework as an optimization problem and provide a solution algorithm based on the proximal gradient method, which is more memory-efficient than the popular ADMM-based compression approaches. In experiments, we show that our framework can improve the trade-off between adversarial robustness and compression rate compared to the existing state-of-the-art adversarial pruning approach.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Hyun Kwon ◽  
Jun Lee

This paper presents research focusing on visualization and pattern recognition based on computer science. Although deep neural networks demonstrate satisfactory performance regarding image and voice recognition, as well as pattern analysis and intrusion detection, they exhibit inferior performance towards adversarial examples. Noise introduction, to some degree, to the original data could lead adversarial examples to be misclassified by deep neural networks, even though they can still be deemed as normal by humans. In this paper, a robust diversity adversarial training method against adversarial attacks was demonstrated. In this approach, the target model is more robust to unknown adversarial examples, as it trains various adversarial samples. During the experiment, Tensorflow was employed as our deep learning framework, while MNIST and Fashion-MNIST were used as experimental datasets. Results revealed that the diversity training method has lowered the attack success rate by an average of 27.2 and 24.3% for various adversarial examples, while maintaining the 98.7 and 91.5% accuracy rates regarding the original data of MNIST and Fashion-MNIST.


Sign in / Sign up

Export Citation Format

Share Document