Droplet-Based Microfluidic Tool to Quantify Viscosity of Concentrating Protein Solutions

Author(s):  
Deyu Yang ◽  
Maryam Daviran ◽  
Kelly M. Schultz ◽  
Lynn M. Walker
Keyword(s):  
Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


1935 ◽  
Vol 108 (3) ◽  
pp. 703-707
Author(s):  
David B. Hand
Keyword(s):  

Antibodies ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 21
Author(s):  
Alexandre Ambrogelly

The color of a therapeutic monoclonal antibody solution is a critical quality attribute. Consistency of color is typically assessed at time of release and during stability studies against preset criteria for late stage clinical and commercial products. A therapeutic protein solution’s color may be determined by visual inspection or by more quantitative methods as per the different geographical area compendia. The nature and intensity of the color of a therapeutic protein solution is typically determined relative to calibrated standards. This review covers the analytical methodologies used for determining the color of a protein solution and presents an overview of protein variants and impurities known to contribute to colored recombinant therapeutic protein solutions.


2021 ◽  
Vol 23 (4) ◽  
pp. 2686-2696
Author(s):  
Lorena Hentschel ◽  
Jan Hansen ◽  
Stefan U. Egelhaaf ◽  
Florian Platten

Microcalorimetric and van't Hoff determinations as well as a theoretical description provide a consistent picture of the crystallization enthalpy and entropy of protein solutions and their dependence on physicochemical solution parameters.


1970 ◽  
Vol 245 (17) ◽  
pp. 4251-4255
Author(s):  
Bruce P. Gaber ◽  
Walter E. Schillinger ◽  
Seymour H. Koenig ◽  
Philip Aisen

1933 ◽  
Vol 17 (2) ◽  
pp. 159-164 ◽  
Author(s):  
M. L. Anson ◽  
A. E. Mirsky

Inactive denatured trypsin changes into active native trypsin in the protein solutions which have been used to estimate tryptic activity. If the digestion mixture, however, is alkaline enough and contains enough urea this change does not take place. Such a digestion mixture can be used to estimate active native trypsin in the presence of inactive denatured trypsin.


Sign in / Sign up

Export Citation Format

Share Document