therapeutic protein
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 90)

H-INDEX

46
(FIVE YEARS 7)

Biomaterials ◽  
2022 ◽  
pp. 121370
Author(s):  
Priya Katyal ◽  
Aubryanna Hettinghouse ◽  
Michael Meleties ◽  
Sadaf Hasan ◽  
Changhong Chen ◽  
...  

Author(s):  
Roderick van den Berg ◽  
Enrico Mastrobattista ◽  
Wim Jiskoot

Disclaimer In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.


2021 ◽  
pp. 123092
Author(s):  
Arnaud Fevre ◽  
Steffen Kiessig ◽  
Lea Bonnington ◽  
Jan Olaf Stracke ◽  
Patrick Bulau

Author(s):  
Melissa A. Pegues ◽  
Karol Szczepanek ◽  
Faruk Sheikh ◽  
Seth G. Thacker ◽  
Baikuntha Aryal ◽  
...  

Abstract Purpose Polysorbate excipients are commonly used as surfactants to stabilize therapeutic proteins in formulations. Degradation of polysorbates could lead to particle formation and instability of the drug formulation. We investigated how the fatty acid composition of polysorbate 80 impacts the degradation profile, particle formation, and product stability under stress conditions. Methods Two polysorbate 80-containing therapeutic protein formulations were reformulated with either Polysorbate 80 NF synthesized from a fatty acid mixture that contains mainly oleic acid (≥58%) or a version of polysorbate 80 synthesized with high oleic acid (>98%). Stress conditions, including high temperature and esterase spiking, were applied and changes to both the polysorbate and the therapeutic protein product were investigated for stability, purity, innate immune response and biological activity. Results The addition of esterase and storage at 37°C led to significant hydrolysis of the polysorbate and increases in sub-visible particle formation for both polysorbates tested. The fatty acid composition of polysorbate 80 did not directly alter the stability profile of either therapeutic protein as measured by size exclusion chromatography, or significantly impact innate immune response or biological activity. However, formulations with Polysorbate 80 NF showed greater propensity for sub-visible particle formation under stress conditions. Conclusions These results suggest that composition of fatty acids in polysorbate 80 may be a promoter for sub-visible particulate formation under the stress conditions tested but may not impact protein aggregation or biological activity.


2021 ◽  
Vol 11 (22) ◽  
pp. 11009
Author(s):  
Hyeonjin Cha ◽  
Ju-Hyun Park

The enhancement of recombinant therapeutic protein production in mammalian cell culture has been regarded as an important issue in the biopharmaceutical industry. Previous studies have reported that the addition of the recombinant 30Kc19 protein, a silkworm-derived plasma protein with simultaneous cell-penetrating and mitochondrial enzyme-stabilizing properties, can enhance the recombinant protein expression in Chinese hamster ovary (CHO) cell culture. Here, we produced an α-helix N-terminal domain of 30Kc19, called (30Kc19α), and investigated its effects on the production of human erythropoietin (EPO), a widely used therapeutic protein for the treatment of anemia, in recombinant CHO cell culture. Similar to the full-length 30Kc19, 30Kc19α was able to be mass-produced in a form of recombinant protein through an Escherichia coli expression system and delivered into EPO-producing CHO (EPO–CHO) cells. Supplementing the medium of EPO–CHO cell culture with 30Kc19α increased the intracellular NADPH/NADP+ ratio related to the flux of metabolic reducing power for protein biosynthesis, subsequently enhancing EPO production in serum-free culture. 30Kc19α is considered to have certain advantages in the downstream purification process of therapeutic protein production when it is used as a medium supplement due to its small size and low isoelectric point compared to the full-length 30Kc19. These results suggest that 30Kc19α has potential use for manufacturing biopharmaceutical proteins.


2021 ◽  
Author(s):  
Matthew J McNulty ◽  
Anton Schwartz ◽  
Jesse Delzio ◽  
Kalimuthu Karuppanan ◽  
Aaron Jacobson ◽  
...  

The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via crop cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity of current industry standards by an order of magnitude.


2021 ◽  
Vol 144 ◽  
pp. 116407 ◽  
Author(s):  
Harleen Kaur ◽  
Jeff Beckman ◽  
Yiting Zhang ◽  
Zheng Jian Li ◽  
Marton Szigeti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document