scholarly journals Faber-Krahn Inequality for Anisotropic Eigenvalue Problems with Robin Boundary Conditions

2014 ◽  
Vol 41 (4) ◽  
pp. 1147-1166 ◽  
Author(s):  
Francesco Della Pietra ◽  
Nunzia Gavitone
2019 ◽  
Vol 22 (1) ◽  
pp. 78-94 ◽  
Author(s):  
Malgorzata Klimek

Abstract We discuss a fractional eigenvalue problem with the fractional Sturm-Liouville operator mixing the left and right derivatives of order in the range (1/2, 1], subject to a variant of Robin boundary conditions. The considered differential fractional Sturm-Liouville problem (FSLP) is equivalent to an integral eigenvalue problem on the respective subspace of continuous functions. By applying the properties of the explicitly calculated integral Hilbert-Schmidt operator, we prove the existence of a purely atomic real spectrum for both eigenvalue problems. The orthogonal eigenfunctions’ systems coincide and constitute a basis in the corresponding weighted Hilbert space. An analogous result is obtained for the reflected fractional Sturm-Liouville problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Li-Bin Liu ◽  
Ying Liang ◽  
Xiaobing Bao ◽  
Honglin Fang

AbstractA system of singularly perturbed convection-diffusion equations with Robin boundary conditions is considered on the interval $[0,1]$ [ 0 , 1 ] . It is shown that any solution of such a problem can be expressed to a system of first-order singularly perturbed initial value problem, which is discretized by the backward Euler formula on an arbitrary nonuniform mesh. An a posteriori error estimation in maximum norm is derived to design an adaptive grid generation algorithm. Besides, in order to establish the initial values of the original problems, we construct a nonlinear optimization problem, which is solved by the Nelder–Mead simplex method. Numerical results are given to demonstrate the performance of the presented method.


2016 ◽  
Vol 2016 (6) ◽  
pp. 063104 ◽  
Author(s):  
Jean-Emile Bourgine ◽  
Paul A Pearce ◽  
Elena Tartaglia

Sign in / Sign up

Export Citation Format

Share Document