Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide

2013 ◽  
Vol 12 (9) ◽  
pp. 3023-3031 ◽  
Author(s):  
Qi-Liang He ◽  
Jing-Bo Xu ◽  
Dao-Xin Yao
2016 ◽  
Vol 24 (10) ◽  
pp. 10817 ◽  
Author(s):  
Zheng-Da Hu ◽  
Xiuye Liang ◽  
Jicheng Wang ◽  
Yixin Zhang

1999 ◽  
Vol 337 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Jérôme NIGOU ◽  
Martine GILLERON ◽  
Germain PUZO

Lipoarabinomannans, which exhibit a large spectrum of immunological activities, emerge as the major antigens of mycobacterial envelopes. The lipoarabinomannan structure is based on a phosphatidyl-myo-inositol anchor whose integrity has been shown to be crucial for lipoarabinomannan biological activity and particularly for presentation to CD4/CD8 double-negative αβT cells by CD1 molecules. In this report, an analytical approach was developed for high-resolution 31P-NMR analysis of native, i.e. multiacylated, lipoarabinomannans. The one-dimensional 31P spectrum of cellular lipoarabinomannans, from Mycobacterium bovis Bacillus Calmette–Guérin, exhibited four 31P resonances typifying four types of lipoarabinomannans. Two-dimensional 1H-31P heteronuclear multiple-quantum-correlation/homonuclear Hartmann–Hahn analysis of the native molecules showed that these four types of lipoarabinomannan differed in the number and localization of fatty acids (from 1 to 4) esterifying the anchor. Besides the three acylation sites previously described, i.e. positions 1 and 2 of glycerol and 6 of the mannosyl unit linked to the C-2 of myo-inositol, we demonstrate the existence of a fourth acylation position at the C-3 of myo-inositol. We report here the first structural study of native multiacylated lipoarabinomannans, establishing the structure of the intact phosphatidyl-myo-inositol anchor. Our findings would help gain more understanding of the molecular basis of lipoarabinomannan discrimination in the binding process to CD1 molecules.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Wan-li Yang ◽  
Jun-Hong An ◽  
Cheng-jie Zhang ◽  
Chang-yong Chen ◽  
C. H. Oh

2012 ◽  
Vol 11 (03) ◽  
pp. 1242003 ◽  
Author(s):  
PAOLO BORDONE ◽  
FABRIZIO BUSCEMI ◽  
CLAUDIA BENEDETTI

We analyze the effect of a classical noise into the entanglement dynamics between two particles, initially entangled, subject to continuous time quantum walks in a one-dimensional lattice. The noise is modeled by randomizing the transition amplitudes from one site to another. Both Markovian and non-Markovian environments are considered. For the Markov regime an exponential decay of the initial quantum correlation is found, while the loss of coherence of the quantum state increases monotonically with time up to a saturation value depending upon the degrees of freedom of the system. For the non-Markov regime the presence or absence of entanglement revival and entanglement sudden death phenomena is found or deduced depending on the peculiar characteristics of the noise. Our results indicate that the entanglement dynamics in the non-Markovian regime is affected by the persistence of the memory effects of the environment and by its intrinsic features.


2015 ◽  
Vol 29 (09) ◽  
pp. 1550071 ◽  
Author(s):  
Jing-Min Zhu

For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.


Sign in / Sign up

Export Citation Format

Share Document