entanglement dynamics
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 76)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Vincenzo Alba

We investigate the entanglement dynamics in a free-fermion chain initially prepared in a Fermi sea and subjected to localized losses (dissipative impurity). We derive a formula describing the dynamics of the entanglement entropies in the hydrodynamic limit of long times and large intervals. The result depends only on the absorption coefficient of the effective delta potential describing the impurity in the hydrodynamic limit. Genuine dissipation-induced entanglement is certified by the linear growth of the logarithmic negativity. Finally, in the quantum Zeno regime at strong dissipation the entanglement growth is arrested (Zeno entanglement death).


2021 ◽  
pp. 1-11
Author(s):  
Mehrad Gavahi ◽  
Hong Rong Li

In this work, a model of optomechanical system was investigated by analyzing the entanglement dynamics of two related mechanical oscillators in a modified system. Geometrical shapes effects of optical cavities on entanglement of a representative optomechanical system were investigated by means of performing numerical analysis. It was signified that the steady-state or the dynamic behavior of optomechanical engagement could be created owing to the strength of mechanical pairs, which are strong towards the oscillating temperature. In addition, the mentioned entanglement dynamics were seen to be entirely related to the natural state’s stability. Furthermore, rendering the mechanical damping effects, the critical mechanical coupling strength-related analytical expression, where the transition from a steady state to a dynamic clamp occurs, was reported. In the studied system, two identical mechanical oscillators were formed in different conditions of the optical cavities shapes.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Katja Klobas ◽  
Bruno Bertini

We study the entanglement dynamics generated by quantum quenches in the quantum cellular automaton Rule 54. We consider the evolution from a recently introduced class of solvable initial states. States in this class relax (locally) to a one-parameter family of Gibbs states and the thermalisation dynamics of local observables can be characterised exactly by means of an evolution in space. Here we show that the latter approach also gives access to the entanglement dynamics and derive exact formulas describing the asymptotic linear growth of all Rényi entropies in the thermodynamic limit and their eventual saturation for finite subsystems. While in the case of von Neumann entropy we recover exactly the predictions of the quasiparticle picture, we find no physically meaningful quasiparticle description for other Rényi entropies. Our results apply to both homogeneous and inhomogeneous quenches.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Cesar A. Agón ◽  
Márk Mezei

Abstract Recently, an effective membrane theory was proposed that describes the “hydrodynamic” regime of the entanglement dynamics for general chaotic systems. Motivated by the new bit threads formulation of holographic entanglement entropy, given in terms of a convex optimization problem based on flow maximization, or equivalently tight packing of bit threads, we reformulate the membrane theory as a max flow problem by proving a max flow-min cut theorem. In the context of holography, we explain the relation between the max flow program dual to the membrane theory and the max flow program dual to the holographic surface extremization prescription by providing an explicit map from the membrane to the bulk, and derive the former from the latter in the “hydrodynamic” regime without reference to minimal surfaces or membranes.


2021 ◽  
Vol 127 (15) ◽  
Author(s):  
Da Zhang ◽  
David Barral ◽  
Yin Cai ◽  
Yanpeng Zhang ◽  
Min Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document