Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord

2019 ◽  
Vol 18 (2) ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud
2018 ◽  
Vol 32 (20) ◽  
pp. 1850218 ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the behavior of quantum correlations in some specific Werner-like two-qubit states, where the qubit interacts individually with non-Markovian environment. We employ the local quantum uncertainty and trace distance discord to quantify the amount of quantum correlations between the evolved qubits and the corresponding analytical expressions are derived. For specific values of the parameters characterizing the whole system, the dynamics of quantum correlations exhibits collapse and revival phenomena. The influence of the non-Markovianity is also investigated to analyze the monotonic decay of quantum correlations in the limiting case of Markovian regime. Furthermore, we show that trace distance discord captures quantum correlations that cannot be revealed by local quantum uncertainty in some particular situations.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850029 ◽  
Author(s):  
Biao-Liang Ye ◽  
Bo Li ◽  
Xianqing Li-Jost ◽  
Shao-Ming Fei

We investigate the quantum phase transitions for the [Formula: see text] spin-1/2 chains via the quantum correlations between the nearest and next-to-nearest neighbor spins characterized by negativity, information deficit, trace distance discord and local quantum uncertainty. It is shown that all these correlations exhibit the quantum phase transitions at [Formula: see text]. However, only information deficit and local quantum uncertainty can demonstrate quantum phase transitions at [Formula: see text]. The analytical and numerical behaviors of the quantum correlations for the [Formula: see text] system are presented. We also consider quantum correlations in the Hartree–Fock ground state of the Lipkin–Meshkov–Glick (LMG) model.


2017 ◽  
Vol 15 (01) ◽  
pp. 1750001 ◽  
Author(s):  
L. Jebli ◽  
B. Benzimoune ◽  
M. Daoud

A special emphasis is devoted to the concept of local quantum uncertainty as an indicator of quantum correlations. We study quantum discord for a class of two-qubit states parametrized by two parameters. Quantum discord based on local quantum uncertainty, von Neumann entropy and trace distance (Schatten 1-norm) are explicitly derived and compared. The behavior of quantum correlations, quantified via local quantum uncertainty, under decoherence effects is investigated. We show that the discordlike local quantum uncertainty exhibits the possibility of freezing behavior during its evolution.


2020 ◽  
Vol 66 (4 Jul-Aug) ◽  
pp. 525
Author(s):  
M. Chávez-Huerta ◽  
F. Rojas

Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of spatially separated pigment molecules as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs of chromophores, and one chromophore with two chromophores. Implementation of the LQU approach allows us to characterize quantum correlations that had not been studied before, identify the most quantum correlated subsets of chromophores, and determine that, in the strongest associations of chromophores, the LQU is a monotonically increasing function of the coherence.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Zhi He ◽  
Chunmei Yao ◽  
Qiong Wang ◽  
Jian Zou

Sign in / Sign up

Export Citation Format

Share Document