scholarly journals Lower bound of local quantum uncertainty for high-dimensional bipartite quantum systems

Author(s):  
ShuHao Wang ◽  
Hui Li ◽  
Xian Lu ◽  
Bin Chen
2017 ◽  
Vol 15 (03) ◽  
pp. 1750020 ◽  
Author(s):  
L. Jebli ◽  
B. Benzimoun ◽  
M. Daoud

Local quantum uncertainty is defined as the minimum amount of uncertainty in measuring a local observable for a bipartite state. It provides a well-defined measure of pairwise quantum correlations in quantum systems and has operational significance in quantum metrology. In this work, we analytically derive the expression of local quantum uncertainty for two-qubit [Formula: see text] states which are of paramount importance in various fields of quantum information. As an illustration, we consider two-qubit states extracted from even and odd spin coherent states.


2020 ◽  
Vol 66 (4 Jul-Aug) ◽  
pp. 525
Author(s):  
M. Chávez-Huerta ◽  
F. Rojas

Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of spatially separated pigment molecules as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs of chromophores, and one chromophore with two chromophores. Implementation of the LQU approach allows us to characterize quantum correlations that had not been studied before, identify the most quantum correlated subsets of chromophores, and determine that, in the strongest associations of chromophores, the LQU is a monotonically increasing function of the coherence.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850218 ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the behavior of quantum correlations in some specific Werner-like two-qubit states, where the qubit interacts individually with non-Markovian environment. We employ the local quantum uncertainty and trace distance discord to quantify the amount of quantum correlations between the evolved qubits and the corresponding analytical expressions are derived. For specific values of the parameters characterizing the whole system, the dynamics of quantum correlations exhibits collapse and revival phenomena. The influence of the non-Markovianity is also investigated to analyze the monotonic decay of quantum correlations in the limiting case of Markovian regime. Furthermore, we show that trace distance discord captures quantum correlations that cannot be revealed by local quantum uncertainty in some particular situations.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Zhi He ◽  
Chunmei Yao ◽  
Qiong Wang ◽  
Jian Zou

2021 ◽  
Vol 21 (15&16) ◽  
pp. 1274-1295
Author(s):  
A.G. Abdelwahab ◽  
A. Ghwail ◽  
N. Metwally ◽  
M.H. Mahran ◽  
A. -S. F. Obada

The local and non local behavior of the accelerated Gisin state are investigated either before or after filtering process. It is shown that, the possibility of predicting the non-local behavior is forseen at large values of the weight of the Gisin and acceleration parameters. Due to the filtering process, the non-locality behavior of the Gisin state is predicted at small values of the weight parameter. The amount of non classical correlations are quantified by means of the local quantum uncertainty (LQU)and the concurrence, where the LQU is more sensitive to the non-locality than the concurrence. The phenomenon of the sudden changes is displayed for both quantifiers. Our results show that, the accelerated Gisin state could be used to mask information, where all the possible partitions of the masked state satisfy the masking criteria. Moreover, there is a set of states, which satisfy the masking condition, that is generated between each qubit and its masker qubit. For this set, the amount of the non-classical correlations increases as the acceleration parameter increases . Further, the filtering process improves these correlations, where their maximum bounds are much larger than those depicted for non-filtered states.


Sign in / Sign up

Export Citation Format

Share Document