trace distance
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 3)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1527
Author(s):  
Luis Pedro García-Pintos ◽  
Adolfo del Campo

We formulate limits to perception under continuous quantum measurements by comparing the quantum states assigned by agents that have partial access to measurement outcomes. To this end, we provide bounds on the trace distance and the relative entropy between the assigned state and the actual state of the system. These bounds are expressed solely in terms of the purity and von Neumann entropy of the state assigned by the agent, and are shown to characterize how an agent’s perception of the system is altered by access to additional information. We apply our results to Gaussian states and to the dynamics of a system embedded in an environment illustrated on a quantum Ising chain.


Author(s):  
Ranyiliu Chen ◽  
Zhixin Song ◽  
Xuanqiang Zhao ◽  
Xin Wang

Abstract Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentiallyhard to evaluate in general. In this work, we introduce hybrid quantum-classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the Variational Fidelity Estimation (VFE) algorithm. We combine Uhlmann’s theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Run-Qiu Yang

Abstract This paper provides a holographic approach to compute some most-frequently used quantum distances and quasi-distances in strongly coupling systems and conformal field theories. By choosing modular ground state as the reference state, it finds that the trace distance, Fubini-Study distance, Bures distance and Rényi relative entropy, all have gravity duals. Their gravity duals have two equivalent descriptions: one is given by the integration of the area of a cosmic brane, the other one is given by the Euclidian on-shell action of dual theory and the area of the cosmic brane. It then applies these duals into the 2-dimensional conformal field theory as examples and finds the results match with the computations of field theory exactly.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


2021 ◽  
pp. 2150074
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the quantum correlations of a two-qubit XYZ Heisenberg spin-1/2 chain model with Dzyaloshinskii–Moriya interaction. The two-qubit system is considered in thermal equilibrium. The variations of logarithmic negativity, uncertainty-induced quantum nonlocality (UIN) and trace distance discord, versus the parameters characterizing the system, are analyzed. The results show that the UIN measure captures quantum correlations that cannot be revealed by entanglement and trace discord. We also show that the Dzyaloshinskii–Moriya interaction enhances the non-classical correlations between the spins and can weaken the undesirable destructive effects of thermal fluctuations. In addition, an entangled–unentangled phase transition can be detected from the behavior of logarithmic negativity.


Optik ◽  
2021 ◽  
Vol 225 ◽  
pp. 165744
Author(s):  
A.-B.A. Mohamed ◽  
M. Abdel-Aty ◽  
H. Eleuch

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jiaju Zhang ◽  
Pasquale Calabrese ◽  
Marcello Dalmonte ◽  
Mohammad Ali Rajabpour

We carry out a comprehensive comparison between the exact modular Hamiltonian and the lattice version of the Bisognano-Wichmann (BW) one in one-dimensional critical quantum spin chains. As a warm-up, we first illustrate how the trace distance provides a more informative mean of comparison between reduced density matrices when compared to any other Schatten nn-distance, normalized or not. In particular, as noticed in earlier works, it provides a way to bound other correlation functions in a precise manner, i.e., providing both lower and upper bounds. Additionally, we show that two close reduced density matrices, i.e. with zero trace distance for large sizes, can have very different modular Hamiltonians. This means that, in terms of describing how two states are close to each other, it is more informative to compare their reduced density matrices rather than the corresponding modular Hamiltonians. After setting this framework, we consider the ground states for infinite and periodic XX spin chain and critical Ising chain. We provide robust numerical evidence that the trace distance between the lattice BW reduced density matrix and the exact one goes to zero as \ell^{-2}ℓ−2 for large length of the interval \ellℓ. This provides strong constraints on the difference between the corresponding entanglement entropies and correlation functions. Our results indicate that discretized BW reduced density matrices reproduce exact entanglement entropies and correlation functions of local operators in the limit of large subsystem sizes. Finally, we show that the BW reduced density matrices fall short of reproducing the exact behavior of the logarithmic emptiness formation probability in the ground state of the XX spin chain.


Sign in / Sign up

Export Citation Format

Share Document