scholarly journals Toward a quantum computing algorithm to quantify classical and quantum correlation of system states

2021 ◽  
Vol 20 (12) ◽  
Author(s):  
M. Mahdian ◽  
H. Davoodi Yeganeh
Author(s):  
M. Suhail Zubairy

This chapter deals with some of the most prominent successes of quantum computing. The most well-known quantum computing algorithm, Shor’s algorithm for factoring a number in its prime factors, is discussed in details. The key to Shor’s algorithm is the quantum Fourier transform that is explained with the help of simple examples. The role of quantum entanglement is also discussed. The next important quantum computing algorithm is Grover’s algorithm that helps in searching an item in an unsorted database. This algorithm is motivated by first discussing a quantum shell game in which a pea hidden under one of the four shells is found in one measurement with certainty each time. This amazing result is then generalized to an arbitrary number of objects and Grover’s algorithm.


2021 ◽  
Vol 36 (12) ◽  
pp. 2150088
Author(s):  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Wei-Min Shang ◽  
Jing-Ling Chen

Quantum contextuality, a more general quantum correlation, is an important resource for quantum computing and quantum information processing. Meanwhile, quantum contextuality plays an important role in fundamental quantum physics. Yu and Oh (YO) proposed a proof of the Kochen–Specker theorem for a qutrit with only 13 rays. Here, we further study quantum contextuality of YO-13 rays using the inequality approach. The maximum quantum violation value of the optimal noncontextuality inequality constructed by YO-13 rays is increased to 11.9776 in the four-dimensional system, which is larger than 11.6667 in the qutrit system. The result shows that the set of YO-13 rays has stronger quantum contextuality in the four-dimensional system. Moreover, we provide an all-versus-nothing proof (i.e. Hardy-like proof) to study YO-13 rays without using any inequality, which is easily applied to experimental tests. Our results will further deepen the understanding of YO-13 rays.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Khadeejah Bepari ◽  
Sarah Malik ◽  
Michael Spannowsky ◽  
Simon Williams

2019 ◽  
Author(s):  
Mark Fingerhuth ◽  
Tomáš Babej ◽  
Peter Wittek

2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document