Quantum contextuality of YO-13 rays

2021 ◽  
Vol 36 (12) ◽  
pp. 2150088
Author(s):  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Wei-Min Shang ◽  
Jing-Ling Chen

Quantum contextuality, a more general quantum correlation, is an important resource for quantum computing and quantum information processing. Meanwhile, quantum contextuality plays an important role in fundamental quantum physics. Yu and Oh (YO) proposed a proof of the Kochen–Specker theorem for a qutrit with only 13 rays. Here, we further study quantum contextuality of YO-13 rays using the inequality approach. The maximum quantum violation value of the optimal noncontextuality inequality constructed by YO-13 rays is increased to 11.9776 in the four-dimensional system, which is larger than 11.6667 in the qutrit system. The result shows that the set of YO-13 rays has stronger quantum contextuality in the four-dimensional system. Moreover, we provide an all-versus-nothing proof (i.e. Hardy-like proof) to study YO-13 rays without using any inequality, which is easily applied to experimental tests. Our results will further deepen the understanding of YO-13 rays.

2002 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
S.J. van Enk ◽  
H.J. Kimble

Control fields in quantum information processing are almost by definition assumed to be classical. In reality, however, when such a field is used to manipulate the quantum state of qubits, the qubits always become slightly entangled with the field. For quantum information processing this is an undesirable property, as it precludes perfect quantum computing and quantum communication. Here we consider the interaction of atomic qubits with laser fields and quantify atom-field entanglement in various cases of interest. We find that the entanglement decreases with the average number of photons \bar{n} in a laser beam as $E\propto\log_2 \bar{n}/\bar{n}$ for $\bar{n}\rightarrow\infty$.


2005 ◽  
Vol 03 (01) ◽  
pp. 201-205 ◽  
Author(s):  
YASSER OMAR

Particle statistics is a fundamental part of quantum physics, and yet its role and use in the context of quantum information have been poorly explored so far. After briefly introducing particle statistics and the Symmetrization Postulate, we argue that this fundamental aspect of nature can be seen as a resource for quantum information processing and present examples showing how it is possible to do useful and efficient quantum information processing using only the effects of particle statistics.


2016 ◽  
Vol 14 (06) ◽  
pp. 1640024 ◽  
Author(s):  
Debasis Sarkar

Entanglement is one of the most useful resources in quantum information processing. It is effectively the quantum correlation between different subsystems of a composite system. Mathematically, one of the most hard tasks in quantum mechanics is to quantify entanglement. However, progress in this field is remarkable but not complete yet. There are many things to do with quantification of entanglement. In this review, we will discuss some of the important measures of bipartite entanglement.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

A computer is a physical device that helps us process information by executing algorithms. An algorithm is a well-defined procedure, with finite description, for realizing an information-processing task. An information-processing task can always be translated into a physical task. When designing complex algorithms and protocols for various information-processing tasks, it is very helpful, perhaps essential, to work with some idealized computing model. However, when studying the true limitations of a computing device, especially for some practical reason, it is important not to forget the relationship between computing and physics. Real computing devices are embodied in a larger and often richer physical reality than is represented by the idealized computing model. Quantum information processing is the result of using the physical reality that quantum theory tells us about for the purposes of performing tasks that were previously thought impossible or infeasible. Devices that perform quantum information processing are known as quantum computers. In this book we examine how quantum computers can be used to solve certain problems more efficiently than can be done with classical computers, and also how this can be done reliably even when there is a possibility for errors to occur. In this first chapter we present some fundamental notions of computation theory and quantum physics that will form the basis for much of what follows. After this brief introduction, we will review the necessary tools from linear algebra in Chapter 2, and detail the framework of quantum mechanics, as relevant to our model of quantum computation, in Chapter 3. In the remainder of the book we examine quantum teleportation, quantum algorithms and quantum error correction in detail. We are often interested in the amount of resources used by a computer to solve a problem, and we refer to this as the complexity of the computation. An important resource for a computer is time. Another resource is space, which refers to the amount of memory used by the computer in performing the computation. We measure the amount of a resource used in a computation for solving a given problem as a function of the length of the input of an instance of that problem.


2015 ◽  
Vol 29 (15) ◽  
pp. 1550098 ◽  
Author(s):  
Wen-Xue Chen ◽  
Yu-Xia Xie ◽  
Xiao-Qiang Xi

Quantum correlations are essential for quantum information processing (QIP). Measurement-induced nonlocality (MIN) is a good measure of quantum correlation, and is favored for its conceptual implication and potential application. We investigated here the particular behaviors of the geometric and entropic measures of MIN in the two-qubit Heisenberg XY model and revealed the effects of anisotropic parameter γ and the external magnetic field B on them. Our results showed that both γ and B can serve as efficient controlling parameters for tuning MIN in the XY model.


COSMOS ◽  
2006 ◽  
Vol 02 (01) ◽  
pp. 61-70 ◽  
Author(s):  
YASSER OMAR

In this article, we will show how particle statistics can be used as a resource for quantum information processing. After introducing this fundamental aspect of quantum physics, we will present several examples showing how it is possible to perform both useful and efficient quantum information processing relying only on the effects of the indistinguishability of identical particles. All the proposed schemes can be implemented with current technology.


Sign in / Sign up

Export Citation Format

Share Document