Photocatalytic properties of PbMoO4 synthesized by co-precipitation method: organic dyes degradation under UV irradiation

2011 ◽  
Vol 38 (3-5) ◽  
pp. 817-828 ◽  
Author(s):  
D. B. Hernández-Uresti ◽  
A. Martínez-de la Cruz ◽  
Leticia M. Torres-Martínez
2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Nur Iman Amir ◽  
Nurhidayatullaili Muhd Julkaplia ◽  
Saba Afzal

Titanium dioxide (TiO2) nanoparticles are used enormously for treating wastewater pollutants due to their unique optoelectronic and physiochemical properties. Though, wide bandgap, fast recombination of e- - h+ pair, and low adsorption toward organic pollutants limit their applications. However, immobilization of TiO2 on Chitosan (Cs) is believed to overcome these limitations. Cs with plenty of NH2 and OH groups in their structure are expected to enhance their adsorption and consequently photocatalytic performance. A series of TiO2/Cs photocatalysts have been prepared using a chemical co-precipitation method. Amount of TiO2 is varied from 0.25, 0.50, and 0.75 to 1.0 g. The photocatalysts are characterized by using FESEM-EDS, CHNS Elemental Analyser TGA, FTIR, and UV-Vis spectroscopy. These characterization results revealed the formation of a good interface between TiO2 and Cs matrix. Increasing TiO2 content significantly increased the thermal stability of the photocatalyst up to 600ᵒC. The photocatalytic activity of Cs/TiO2 is observed under UV light which is found to be more significant with 1:1(TiO2: Cs) composition for the degradation of methylene blue dye at 85 % and be maintained up to 4 numbers of cycles. This demonstrated open new insight into the application of Cs as a support materials and adsorption agent in TiO2 based photocatalyst system


2015 ◽  
Vol 1123 ◽  
pp. 295-302 ◽  
Author(s):  
Nur Afifah ◽  
Siti Adriani ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

The present study compares the photocatalytic decolorization ability of Fe-doped ZnO modified both natural zeolite and montmorillonite towards aqueous solution of organic dyes such as methylene blue and methyl orange under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and electron spin resonance spectroscopy. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to natural zeolite.


2014 ◽  
Vol 970 ◽  
pp. 29-32 ◽  
Author(s):  
Pongsaton Amornpitoksuk ◽  
Sumetha Suwanboon

The co-effect of PO43- and I- on the formation of a heterosturucture photocatalyst in the Ag3PO4-AgI system was studied by the co-precipitation method between AgNO3 and the precipitating agent. The precipitating agent was prepared by varying the mole ratios between Na2HPO4 and KI. At 10 mol.% KI, the product showed the mixed phase between Ag3PO4 and un-identified phase. For 30 - 90 mol.% KI, the un-identified phase and AgI were detected in the x-ray diffraction patterns. The un-identified phase strongly adsorbed the methylene blue dye. The product prepared from 30 mol.% KI had the highest content of un-identified phase and also showed the highest degree of decolorization in the dark. The photocatalytic properties of products in this system were confirmed by the decolorization of methylene blue under visible illumination.


Author(s):  
Sivakumar Krishnamoorthy ◽  
Dharani M.

Zinc oxide (ZnO) nanoparticles prepared using simple co-precipitation method are characterized and photocatalytic activity is tested on the degradation of methylene blue and rhodamine B organic pollutants. Morphological and structural properties of synthesized nanomaterial have been characterized using FESEM, EDAX spectroscopy, and XRD, while UV-visible DRS spectroscopy and photoluminescence have been used to understand their optical properties. The photocatalytic behaviour of synthesized nanoparticles was evaluated on the degradation of methylene blue (MB) and rhodamine B (RhB) organic pollutants under solar light irradiation. The highest degradation was achieved for MB (100%) over RhB (96%). Preliminary investigation shows the effective degradation of organic pollutants by ZnO nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document