Evolution of the Structural-Phase State of a VT22 Titanium Alloy During Helical Rolling and Subsequent Aging

2015 ◽  
Vol 58 (8) ◽  
pp. 1068-1073 ◽  
Author(s):  
E. V. Naydenkin ◽  
I. V. Ratochka ◽  
I. P. Mishin ◽  
O. N. Lykova
2015 ◽  
Vol 1085 ◽  
pp. 284-288 ◽  
Author(s):  
Viktor Sergeev ◽  
Mark P. Kalashnikov ◽  
Vasilii V. Neufeld

Results of surface modification of the VT-23 titanium alloy by high flux of copper ions with an energy of 2 keV and ion current density of 3.5 mA/cm2 was studied. The dependence of the microhardness and penetration depth of ion as function of duration of ion treatment was determined. Structural-phase state of ion-modified of the VT-23 titanium samples surface layer was investigated by TEM and SEM. Microhardness was researched by nanoindentation method.


2018 ◽  
Vol 143 ◽  
pp. 03011
Author(s):  
Kirill Kurgan ◽  
Vasily Klimenov ◽  
Anatoly Klopotov ◽  
Sergey Gnyusov ◽  
Yuri Abzaev ◽  
...  

2017 ◽  
Vol 906 ◽  
pp. 32-37 ◽  
Author(s):  
Vasilii A. Klimenov ◽  
Anatolii A. Klopotov ◽  
Yu.A. Abzaev ◽  
K.A. Kurgan ◽  
Yu.A. Vlasov

The paper presents the results of the X-ray diffraction analysis of structural-phase states in the weld zone of a titanium alloy Grade2 in micro-and submicrocrystalline states. It is established that the structural-phase state in the weld zone and in the heat-affected zone depends on the state of samples of the alloy Grade2 before welding. It is shown that formation process of metastable phases ω-Ti and α′′-Ti occurs in the submicrocrystalline state in the alloy Grade2 in the weld zone and in the heat-affected zone. Investigations of the features of the microhardness distribution in the weld zone in alloys Grade2 in micro-and submicrocrystalline states are carried out. Different character of microhardness distributions in the weld zone in the samples depending on the structural-phase state of welded plates made of alloy Grade2 is determined.


2019 ◽  
Vol 16 (32) ◽  
pp. 945-966
Author(s):  
V. V. OVCHINNIKOV ◽  
N. V. UCHEVATKINA ◽  
I. A. KURBATOVA ◽  
E. V. LUKYANENKO ◽  
S. V. YAKUTINA

The relevance of the article is due to the fact that the use of titanium alloys within friction joints is restrained by their low resistance to wear while traditional methods of increasing their wear resistance are ineffective. The objective of this work was to study the processes occurring on the surface of VT6 titanium alloy samples when implanting with copper and aluminum ions, as well as in friction. Elemental composition, structural-phase state, mechanical and tribological properties of VT6 titanium alloy surface layers modified by aluminum and copper ions during the high-intensity ion-implantation process was being researched. As can be seen from the undertaken studies, the mode of the high-intensity ion-implantation process makes it possible to obtain ion doped surface layers of VT6 alloy containing TiAl, Ti3Al, Ti3Cu, Ti2Cu, TiCu finely dispersed intermetallic phases and a solid solution of aluminum and copper in titanium of composition varying in depth. The thickness of the ion-doped layer, the average grain size of the intermetallic phases (from 18 to 55nm) and their conglomerates (from 45 to 280 nm) increases with the increase in implantation dose from 2⋅1017 to 1.2⋅1019 ion/cm2 while aluminum implantation (from 0.42 to 2.1 μm) is in progress. It has been shown that the implantation of aluminum and copper ions into VT6 alloy leads to a considerable increase in its microhardness and wearability. Based on the research results, a conclusion on the positive effect of a structural-phase state of ion-doped titanium layers on their mechanical and tribological properties of VT6 titanium alloy has been drawn.


Sign in / Sign up

Export Citation Format

Share Document