Evolution of the Structural-Phase State of a Titanium Alloy of the System Ti–Al–V–Mo During Formation of an Ultrafine-Grained Structure Using Reversible Hydrogenaтion

2019 ◽  
Vol 62 (8) ◽  
pp. 1330-1337 ◽  
Author(s):  
G. P. Grabovetskaya ◽  
O. V. Zabudchenko ◽  
I. P. Mishin ◽  
E. N. Stepanova ◽  
I. V. Ratochka ◽  
...  
2021 ◽  
Vol 1037 ◽  
pp. 535-540
Author(s):  
Viktor Vasilevich Ovchinnikov ◽  
Irina Aleksandrovna Kurbatova ◽  
Elena Vladimirovna Luk'yanenko ◽  
Nadezda Vladimirovna Uchevatkina ◽  
Svetlana Viktorovna Yakutina

The article presents the results of studies of titanium alloy VT20 in ultrafine-grained (UFG), subfine-grained (SMG), fine-grained (MZ) and mesopolycrystalline (MPC) states, obtained, including by methods of plastic deformation and subsequently subjected to ion implantation. The effect of grain size on the structural-phase state of the titanium alloy surface and mechanical properties is shown.


2015 ◽  
Vol 1085 ◽  
pp. 284-288 ◽  
Author(s):  
Viktor Sergeev ◽  
Mark P. Kalashnikov ◽  
Vasilii V. Neufeld

Results of surface modification of the VT-23 titanium alloy by high flux of copper ions with an energy of 2 keV and ion current density of 3.5 mA/cm2 was studied. The dependence of the microhardness and penetration depth of ion as function of duration of ion treatment was determined. Structural-phase state of ion-modified of the VT-23 titanium samples surface layer was investigated by TEM and SEM. Microhardness was researched by nanoindentation method.


2018 ◽  
Vol 143 ◽  
pp. 03011
Author(s):  
Kirill Kurgan ◽  
Vasily Klimenov ◽  
Anatoly Klopotov ◽  
Sergey Gnyusov ◽  
Yuri Abzaev ◽  
...  

2017 ◽  
Vol 906 ◽  
pp. 32-37 ◽  
Author(s):  
Vasilii A. Klimenov ◽  
Anatolii A. Klopotov ◽  
Yu.A. Abzaev ◽  
K.A. Kurgan ◽  
Yu.A. Vlasov

The paper presents the results of the X-ray diffraction analysis of structural-phase states in the weld zone of a titanium alloy Grade2 in micro-and submicrocrystalline states. It is established that the structural-phase state in the weld zone and in the heat-affected zone depends on the state of samples of the alloy Grade2 before welding. It is shown that formation process of metastable phases ω-Ti and α′′-Ti occurs in the submicrocrystalline state in the alloy Grade2 in the weld zone and in the heat-affected zone. Investigations of the features of the microhardness distribution in the weld zone in alloys Grade2 in micro-and submicrocrystalline states are carried out. Different character of microhardness distributions in the weld zone in the samples depending on the structural-phase state of welded plates made of alloy Grade2 is determined.


Sign in / Sign up

Export Citation Format

Share Document