mechanical and tribological properties
Recently Published Documents


TOTAL DOCUMENTS

1544
(FIVE YEARS 588)

H-INDEX

51
(FIVE YEARS 13)

Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Tatyana S. Struchkova ◽  
Andrey P. Vasilev ◽  
Aitalina A. Okhlopkova ◽  
Sakhayana N. Danilova ◽  
Aleksey G. Alekseev

Currently, lightweight and high-strength polymer composites can provide weight savings in the automotive and process equipment industries by replacing metal parts. Polytetrafluoroethylene and polymer composites based on it are used in various tribological applications due to their excellent antifriction properties and thermal stability. This article examines the effect of combined fillers (carbon fibers and zeolite) on the mechanical, tribological properties, and structure of polytetrafluoroethylene. It is shown that the introduction of combined fillers into polytetrafluoroethylene retains the tensile strength and elongation at break at a content of 1–5 wt.% of carbon fibers, the compressive stress increased by 53%, and the yield stress increased by 45% relative to the initial polymer. The wear resistance of polymer composites increased 810-fold compared to the initial polytetrafluoroethylene while maintaining a low coefficient of friction. The structural features of polymer composites are characterized by X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy.


2021 ◽  
pp. 53-57
Author(s):  
Alexander Grenadyorov ◽  
Andrey Solovyev ◽  
Konstantin Oskomov ◽  
Evgeniy Yakovlev

The paper presents the research results of corrosion and mechanical properties of the AISI 316L stainless steel after the surface treatment. This treatment includes the formation of the titanium-based surface alloy provided by the low-energy high-current electron beam. The obtained surface alloy used as an underlayer, is then coated with the a-C:H:SiOx film using the PACVD method. It is shown that such a combined treatment of the steel surface improves its corrosion resistance, i. e., reduces the current density from 110-7 to 910-10 A/cm2 and corrosion rate from 1.110-3 to 9.310-6 mm/year. The resulted modified steel surface possesses high mechanical and tribological properties


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1565
Author(s):  
Haijuan Mei ◽  
Jicheng Ding ◽  
Junfeng Zhao ◽  
Ting Wang ◽  
Kaijian Huang ◽  
...  

As an important high-power impulse magnetron sputtering (HIPIMS) parameter, charge voltage has a significant influence on the microstructure and properties of hard coatings. In this work, the Mo–Cu–V–N coatings were prepared at various charge voltages using HIPIMS technique to study their mechanical and tribological properties. The microstructure was analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The mechanical and tribological properties were investigated by nano-indentation and ball-on-disc tribometer. The results revealed that all the coatings showed a solid-solution phase of B1-MoVN, the V atoms dissolved into face-centered cubic (FCC) B1-MoN lattice by partial substitution of Mo, and formed a solid-solution phase. Even at a high Cu content (~8.8 at. %), the Cu atoms existed as an amorphous phase. When the charge voltage increased, more energy was put into discharge, and the microstructure changed from coarse structure into dense columnar structure, resulting in the highest hardness of 28.2 GPa at 700 V. An excellent wear performance with low friction coefficient of 0.32 and wear rate of 6.3 × 10−17 m3/N·m was achieved at 750 V, and the wear mechanism was dominated by mild abrasive and tribo-oxidation wear.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4407
Author(s):  
Ahmed Fouly ◽  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Khalid Alluhydan ◽  
Hend I. Alkhammash ◽  
...  

Epoxy is considered to be the most popular polymer and is widely used in various engineering applications. However, environmental considerations require natural materials-based epoxy. This necessity results in further utilization of natural materials as a natural reinforcement for different types of composites. Corn cob is an example of a natural material that can be considered as an agricultural waste. The objective of the present work is to improve the economic feasibility of corn cob by converting the original corn cob material into powder to be utilized in reinforcing epoxy-based composites. In the experiment, the corn cob was crushed and ground using a grain miller before it was characterized by scanning electron microscopy (SEM). The corn cob powder was added to the epoxy with different weight fractions (2, 4, 6, 8, 10 wt%). In order to prevent corn cob powder agglomeration and ensure homogeneous distribution of the reinforcement inside the epoxy, the ultrasonic technique and a mechanical stirrer were used. Then, the composite’s chemical compositions were evaluated using X-ray diffraction (XRD). The mechanical experiments showed an improvement in the Young’s modulus and compressive yield strength of the epoxy composites, increasing corn cob up to 8 wt% by 21.26% and 22.22%, respectively. Furthermore, tribological tests revealed that reinforcing epoxy with 8 wt% corn cob can decrease the coefficient of friction by 35% and increase wear resistance by 4.8%. A finite element model for the frictional process was constructed to identify different contact stresses and evaluate the load-carrying capacity of the epoxy composites. The finite element model showed agreement with the experimental results. An epoxy containing 8 wt% corn cob demonstrated the optimal mechanical and tribological properties. The rubbed surfaces were investigated by SEM to identify the wear mechanism of different composites.


MRS Advances ◽  
2021 ◽  
Author(s):  
S. Hernández Montiel ◽  
L. García González ◽  
D. J. Araujo Pérez ◽  
A. López Velázquez ◽  
L. Zamora Peredo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document