Use of four-electrode arrays in three-dimensional electrical resistivity imaging survey

2010 ◽  
Vol 54 (2) ◽  
pp. 299-311 ◽  
Author(s):  
Ahmad Neyamadpour ◽  
W. A. T. Wan Abdullah ◽  
Samsudin Taib
2021 ◽  
Author(s):  
Kamel Hebbache ◽  
Djamel Boubaya

Abstract The aim of this work is to evaluate the efficiency of six electrode arrays used in electrical resistivity imaging. Pole-Pole (PP), Pole-Dipole (PD), Wenner-Alpha (WA), Wenner-Schlumberger (WS), Dipole-Dipole (DD) and multiple Gradient (MG) electrode arrays have been selected to detect underground cavities at shallow depth. Numerical simulation has been made for three synthetic models that have been generated using Res2dmod program. Each model represents three cavities with 2m diameter, spaced 6m from each other and located at a depth of 1.5m from the surface of the ground: 1) air-filled cavity, 2) half-watered cavity and 3) full-watered cavity. The background resistivity of each model was chosen equal to 10, 50 and 250 Ωm respectively. The resistivity of the air and water were set at 106 Ωm and 1 Ωm respectively. The results show that the PD, MG, PP and WS arrays gave good resolutions and clear images, and are less contaminated by noise. The DD array is very sensitive to noise and for this reason, it gave less accurate results for the first and the second synthetic models. An exception is the third synthetic model, where a good resolution model was obtained. This means, that the DD is more efficient in mapping cavities when the background environment is moderately resistive. The shapes of resistive air-filled cavities were found more clearly than those of conductive watered cavities, for the latter, however, the true resistivity values were better estimated than for the air-filled cavities. From the results of the analysis of the inverted synthetic models, the PD, MG, PP and WS arrays show the best results among the other used electrical arrays.


Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 674-680 ◽  
Author(s):  
Laurence R. Bentley ◽  
Mehran Gharibi

Geometrically complex heterogeneities at a decommissioned sour gas plant could not be adequately characterized with drilling and 2D electrical resistivity surveys alone. In addition, 2D electrical resistivity imaging profiles produced misleading images as a result of out‐of‐plane resistivity anomalies and violation of the 2D assumption. Accurate amplitude and positioning of electrical conductivity anomalies associated with the subsurface geochemical distribution were required to effectively analyze remediation alternatives. Forward and inverse modeling and field examples demonstrated that 3D resistivity images were needed to properly reconstruct the amplitude and geometry of the complex resistivity anomalies. Problematic 3D artifacts in 2D images led to poor inversion fits and spurious conductivity values in the images at depths close to the horizontal offset of the off‐line anomaly. Three‐dimensional surveys were conducted with orthogonal sets of Wenner and dipole–dipole 2D resistivity survey lines. The 3D inversions were used to locate source zones and zones of elevated ammonium. Thus, conducting 3D electrical resistivity imaging (ERI) surveys early in the site characterization process will improve cost effectiveness at many remediation sites.


2009 ◽  
Vol 98 (3-4) ◽  
pp. 267-275 ◽  
Author(s):  
Dale F. Rucker ◽  
Al Schindler ◽  
Marc T. Levitt ◽  
Danney R. Glaser

2011 ◽  
Vol 9 (5) ◽  
pp. 469-482 ◽  
Author(s):  
Vanessa Nenna ◽  
Adam Pidlisecky ◽  
Rosemary Knight

Sign in / Sign up

Export Citation Format

Share Document