resistivity imaging
Recently Published Documents


TOTAL DOCUMENTS

678
(FIVE YEARS 124)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yusuke Yamaya ◽  
Yota Suzuki ◽  
Yasuaki Murata ◽  
Kyosuke Okamoto ◽  
Norihiro Watanabe ◽  
...  

2021 ◽  
Vol 54 (2E) ◽  
pp. 198-209
Author(s):  
Osamah Al-Saadi

The friendly-environment geophysical methods are commonly used in various engineering and near-surface environmental investigations. Electrical Resistivity Imaging technique was used to investigate the subsurface rocks, sediments properties of a proposed industrial site to characterize the lateral and vertical lithological changes. via the electrical resistivity, to give an overview about the karst, weak and robust subsoil zones. Nineteen 2D ERI profiles using Wenner array with 2 m electrode spacing have been applied to investigate the specific industry area. One of these profiles has been conducted with one-meter electrode spacing. The surveyed profiles are divided into a number of blocks, each block consists of several parallel profiles in a specific direction. The positions of Electrical Resistivity Imaging profiles in the project area have been determined according to a preliminary subject plan from the civil engineers for factory foundation constructions and proposed locations of heavy machines. The inversion results of profiles showed that areas of blocks A, B, C, and D consist mainly of clastic rocks and sediments, e.g., claystone, siltstone and sandstone. The Electrical Resistivity Imaging inversion sections of blocks A, B, C, and D do not show any indication of cavitation or weak zones of sizes more than 2.0 meters, and no signs of gypsum bodies are found in these areas in general. Gypsum bodies are probably detected at block E, the southern part of the study area. The researchers recommended to keep these rocks in block E away from the continuous running water to avoid cavitation. Furthermore, the construction of heavy machines should keep away from this part of the study area to avoid to some extent, subsoil failure and subsidence in the future. Middle and Northern parts are more consistent to the constructions and factory foundations.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042072
Author(s):  
Yajuan Jia ◽  
Jianbo Zheng ◽  
Hongfang Zhou

Abstract Depth apparent resistivity imaging is an important process of data processing and analysis in the aviation transient electromagnetic method. It can provide reference value of conductor depth, vertical extension, and other information, and can accurately provide the measurement of each aviation transient electromagnetic measurement system. The structural section of the apparent conductivity of the one-dimensional layered medium on the line. As an advanced geophysical exploration technology, the aerial transient electromagnetic method has been applied significantly in the exploration of polymetallic minerals abroad in recent years. In this paper, based on the theory of ground-to-air transient electromagnetic method with multiple radiation sources, a corresponding multi-component global apparent resistivity definition method is established. The advantages of using the magnetic field strength to define the global apparent resistivity of the multi-radiation field source ground-air system are analysed. For each component of the magnetic field strength, respective global apparent resistivity algorithms are proposed to realize the multi-component, full-time, and full-space visual resistivity. The resistivity is calculated, and the influence of the offset on the global apparent resistivity is analysed. By adjusting the relative position of the source and the current direction and other parameters, the multi-radiation source transient electromagnetic ground-air system can not only strengthen the signal strength of different components, weaken random interference, but also better distinguish the location of underground anomalies


Sign in / Sign up

Export Citation Format

Share Document