Short-Term Variations of Cosmic-Ray Intensity During the Recent Deep Solar Minimum and the Previous Four Solar Minima: A Wavelet Analysis

Solar Physics ◽  
2015 ◽  
Vol 290 (10) ◽  
pp. 3071-3079 ◽  
Author(s):  
Y. P. Singh ◽  
Badruddin
2005 ◽  
Vol 20 (29) ◽  
pp. 6717-6719 ◽  
Author(s):  
S. K. MISHRA ◽  
D. P. TIWARI ◽  
S. C. KAUSHIK

Transient decrease in cosmic ray intensity following by a slow recovery typically lasting for several days is identified as Forbush decrease (Fd) event. As a result the geomagnetic index (Dst) decreased up to 300 nT, indicating a large geomagnetic storm and the percentage Fd decrease has gone to 16% giving rise a cosmic ray storm. Both events coincided with interplanetary conditions. Therefore, a systematic study has been performed to investigate the variation of cosmic ray intensity along with the interplanetary and geomagnetic disturbances. Results indicate a strong relationship between geomagnetic activity and Forbush decrease on short-term basis. Two types of interplanetary transient disturbances, namely magnetic cloud events and bidirectional events are analyzed to study the short-term changes in the solar wind (SW) plasma components as well as in cosmic ray intensity.


1989 ◽  
Vol 94 (A2) ◽  
pp. 1459 ◽  
Author(s):  
H. Moraal ◽  
M. S. Potgieter ◽  
P. H. Stoker ◽  
A. J. van der Walt

1968 ◽  
Vol 46 (10) ◽  
pp. S887-S891 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. E. Hagge ◽  
F. B. McDonald

The results of the continuous monitoring of the intensity of cosmic rays (of energy > 50 MeV) with identical G-M counter telescopes flown in satellites IMP I, II, and III and OGO-I are presented along with the differential spectrum studies obtained from balloon flights at Fort Churchill and from satellites. A comparison of the time behavior of the G-M counter data with Deep River neutron monitor data suggests the presence of a "hysteresis" type of behavior due to spectral changes occurring near solar minimum. The existence of this "hysteresis" suggests that the radial gradient of cosmic rays near the earth could be much smaller than the ~ 10%/AU obtained by O'Gallagher and Simpson (1967) and O'Gallagher (1967) at higher energies. The long-term intensity variation of cosmic rays seems to follow the Ap index rather closely in phase, in contrast to sunspot numbers which display a pronounced phase difference with cosmic-ray intensity. The differential spectra of protons and He nuclei have been analyzed in terms of two different models for the propagation in the interplanetary medium. The modulations indicated by the present data seem to disagree with a diffusion coefficient proportional to βR where β and R are the velocity and rigidity of the particle respectively (Jokipii 1966).


1959 ◽  
Vol 37 (5) ◽  
pp. 569-578 ◽  
Author(s):  
A. G. Fenton ◽  
D. C. Rose ◽  
K. G. McCracken ◽  
B. G. Wilson

Recent nucleon intensity data obtained from high counting rate recorders at Ottawa and Hobart, and subsidiary stations, have been examined for evidence for the superposition of transient decreases. It is concluded that, with the statistical accuracy now available due to the high counting rates, it is possible to distinguish two types of transient decreases in the observed variations, superimposed upon the slower 11-year intensity changes. One of these is an almost symmetrical event lasting up to 2 weeks and exhibiting a recurrence tendency of about 27 days, while the other is the more abrupt Forbush decrease which recovers over a period of several days. The evidence indicates that the intensity-controlling mechanism responsible for these short-term transient changes is able to influence the cosmic ray flux at the earth independently of other events that may be in progress at the time. There is also evidence that the physical process controlling the Forbush type of decrease operates over a volume large compared with the earth because the intensity changes at places as far apart as Ottawa, Canada, and Hobart, Tasmania, show changes that are the same within the accuracy of the measurements.


Solar Physics ◽  
2013 ◽  
Vol 286 (2) ◽  
pp. 593-607 ◽  
Author(s):  
R. Modzelewska ◽  
M. V. Alania

New Astronomy ◽  
2003 ◽  
Vol 8 (8) ◽  
pp. 777-794 ◽  
Author(s):  
H Mavromichalaki ◽  
P Preka-Papadema ◽  
I Liritzis ◽  
B Petropoulos ◽  
V Kurt

Sign in / Sign up

Export Citation Format

Share Document