Solar modulation of galactic cosmic rays near solar minimum (1965)

1968 ◽  
Vol 46 (10) ◽  
pp. S887-S891 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. E. Hagge ◽  
F. B. McDonald

The results of the continuous monitoring of the intensity of cosmic rays (of energy > 50 MeV) with identical G-M counter telescopes flown in satellites IMP I, II, and III and OGO-I are presented along with the differential spectrum studies obtained from balloon flights at Fort Churchill and from satellites. A comparison of the time behavior of the G-M counter data with Deep River neutron monitor data suggests the presence of a "hysteresis" type of behavior due to spectral changes occurring near solar minimum. The existence of this "hysteresis" suggests that the radial gradient of cosmic rays near the earth could be much smaller than the ~ 10%/AU obtained by O'Gallagher and Simpson (1967) and O'Gallagher (1967) at higher energies. The long-term intensity variation of cosmic rays seems to follow the Ap index rather closely in phase, in contrast to sunspot numbers which display a pronounced phase difference with cosmic-ray intensity. The differential spectra of protons and He nuclei have been analyzed in terms of two different models for the propagation in the interplanetary medium. The modulations indicated by the present data seem to disagree with a diffusion coefficient proportional to βR where β and R are the velocity and rigidity of the particle respectively (Jokipii 1966).

2003 ◽  
Vol 21 (6) ◽  
pp. 1295-1302 ◽  
Author(s):  
A. V. Belov ◽  
E. A. Eroshenko ◽  
B. Heber ◽  
V. G. Yanke ◽  
A. Raviart ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET) measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles) – Space plasma physics (charged particle motion and acceleration)


2020 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Andrew Taylor ◽  
Paul Rimmer ◽  
Turlough Downes

<p>Cosmic rays may have contributed to the start of life on Earth. Cosmic rays also influence and contribute to atmospheric electrical circuits, cloud cover and biological mutation rates which are important for the characterisation of exoplanetary systems. The flux of Galactic cosmic rays present at the time when life is thought to have begun on the young Earth or in other young exoplanetary systems is largely determined by the properties of the stellar wind. </p> <p>The spectrum of Galactic cosmic rays that we observe at Earth is modulated, or suppressed, by the magnetised solar wind and thus differs from the local interstellar spectrum observed by Voyager 1 and 2 outside of the solar system. Upon reaching 1au, Galactic cosmic rays subsequently interact with the Earth’s magnetosphere and some of their energy is deposited in the upper atmosphere. The properties of the solar wind, such as the magnetic field strength and velocity profile, evolve with time. Generally, young solar-type stars are very magnetically active and are therefore thought to drive stronger stellar winds. </p> <p>Here I will present our recent results which simulate the propagation of Galactic cosmic rays through the heliosphere to the location of Earth as a function of the Sun's life, from 600 Myr to 6 Gyr, in the Sun’s future. I will specifically focus on the flux of Galactic cosmic rays present at the time when life is thought to have started on Earth (~1 Gyr). I will show that the intensity of Galactic cosmic rays which reached the young Earth, by interacting with the solar wind, would have been greatly reduced in comparison to the present day intensity. I will also discuss the effect that the Sun being a slow/fast rotator would have had on the flux of cosmic rays reaching Earth at early times in the solar system's life.</p> <p>Despite the importance of Galactic cosmic rays, their chemical signature in the atmospheres’ of young Earth-like exoplanets may not be observable with instruments in the near future. On the other hand, it may instead be possible to detect their chemical signature by observing young warm Jupiters. Thus, I will also discuss the HR 2562b exoplanetary system as a candidate for observing the chemical signature of Galactic cosmic rays in a young exoplanetary atmosphere with upcoming missions such as JWST.</p>


1968 ◽  
Vol 46 (10) ◽  
pp. S903-S906 ◽  
Author(s):  
J. A. Lockwood ◽  
W. R. Webber

The variation in the cosmic-ray intensity recorded by neutron monitors from 1958 to 1965 has been investigated to deduce the form of the solar modulation of the cosmic radiation. The observed changes in the intensity at the neutron monitor stations, averaged over quarter-year periods, were compared with changes calculated using modulation functions depending upon energy, rigidity, and velocity × rigidity. These calculations were based upon the revised differential response functions deduced by Lockwood and Webber (1967). The variance between the observed and calculated changes in the neutron monitor intensities at different stations was minimized to determine the best form of the solar modulation function. We find that the change of the primary cosmic radiation, deduced from the change in the neutron monitor intensity as well as from direct measurements of the primary flux, can be described by a modulation of the form exp(–K/P) in the rigidity range 0.5 < P < 50 GV. The change between 1959 and 1965 can be fitted with K = 1.94 ± 0.09 and between 1963 and 1965 with K = 0.36 ± 0.05.


2015 ◽  
Vol 93 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Kingsley Chukwudi Okpala ◽  
Francisca Nneka Okeke ◽  
Anselem Ikechukwu Ugwuoke

Galactic cosmic rays are modulated in the heliosphere primarily by the global merged interaction regions with intense magnetic fields, which leads to a decrease in galactic cosmic rays throughout the heliosphere. Using long-term averages of solar wind (SW) component parameters in addition to cosmic ray count rates of four neutron monitors with different rigidity cutoffs, we analyzed the effect of these SW components on the count rates under different interplanetary magnetic field (IMF) disturbance levels. From first-order partial correlation, we found that the IMF-B was the most dominant modulating parameter, especially during quiet conditions and the SW dynamic pressure was more effective during disturbed conditions. The influence of more subtle parameters like wind speed, Bz component, and proton density were masked by these dominant parameters: IMF total B, and SW dynamic pressure.


Solar Physics ◽  
1990 ◽  
Vol 125 (2) ◽  
pp. 409-414 ◽  
Author(s):  
H. Mavromichalaki ◽  
E. Marmatsouri ◽  
A. Vassilaki

2005 ◽  
Vol 23 (9) ◽  
pp. 3003-3007 ◽  
Author(s):  
L. I. Dorman

Abstract. We determine the dimension of the Heliosphere (modulation region), radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR) long-term variation, depending on particle energy, the level of solar activity (SA) and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA) galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.


Author(s):  
Valery L. Yanchukovsky ◽  
◽  
Anastasiya Yu. Belinskaya ◽  

The relationship of Earth's seismicity with solar activity is investigated using the results of continuous long–term observations of cosmic ray intensity, solar activity and the number of strong earthquakes. Modulation of the flux of cosmic rays is used as information on the level of solar activity, processes on the Sun and interplanetary medium. The distribution of the number of sunspots, the intensity of cosmic rays and the number of strong earthquakes in the solar cycle is presented.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 704-718 ◽  
Author(s):  
Paul E Damon ◽  
Songlin Cheng ◽  
Timothy W Linick

The coarse structure of the 14C spectrum consists of a secular trend curve that may be closely fit by a sinusoidal curve with period ca 11,000 yr and half amplitude ±51. This long-term trend is the result of changes in the earth's geomagnetic dipole moment. Consequently, it modulates solar components of the 14C spectrum but does not appear to modulate a component of the spectrum of ca 2300-yr period. The ca 2300-yr period is of uncertain origin but may be due to changes in climate because it also appears in the δ18O spectrum of ice cores. This component strongly modulates the well-known ca 200-yr period of the spectrum's fine structure. The hyperfine structure consists of two components that fluctuate with the 11-yr solar cycle. One component results from solar-wind modulation of the galactic cosmic rays and has a half-amplitude of ca ±1.5. The other component is the result of 14C production by solar cosmic rays that arrive more randomly but rise and fall with the 11-yr cycle and appear to dominate the fluctuation of the galactic cosmic-ray-produced component by a factor of two.


Sign in / Sign up

Export Citation Format

Share Document