neutron monitor
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 64)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 7 (3) ◽  
pp. 120-126
Author(s):  
Valery Yanchukovsky ◽  
Vasiliy Kuz'menko

We have carried out an experimental study of the influence of precipitation in the form of snow on measurements of the neutron flux intensity near Earth's surface. We have examined the state of the snow cover and its density, and found out that the density depends on the depth of the snow cover. Using the experimental results, we estimate the neutron absorption path in the snow. Changes in snow cover by 10–12 cm at a depth of 80 cm are shown to cause variations in the monitor count rate with an amplitude of 0.9 %. At the snow depth of 80 cm, the neutron monitor count rate decreases by about 8 %. The observed variations should be attributed to the meteorological effects of cosmic rays. The absorption coefficient of neutrons in the snow was also found from the correlation between the count rate of the neutron monitor and the amount of snow above the detector. We propose a real-time correction of the neutron monitor data for precipitation in the form of snow. For this purpose, we implement continuous monitoring of the amount of snow cover. The monitoring is provided by a snow meter made using a laser rangefinder module. We discuss the results obtained.


2021 ◽  
Vol 7 (3) ◽  
pp. 114-120
Author(s):  
Valery Yanchukovsky ◽  
Vasiliy Kuz'menko

We have carried out an experimental study of the influence of precipitation in the form of snow on measurements of the neutron flux intensity near Earth's surface. We have examined the state of the snow cover and its density, and found out that the density depends on the depth of the snow cover. Using the experimental results, we estimate the neutron absorption path in the snow. Changes in snow cover by 10–12 cm at a depth of 80 cm are shown to cause variations in the monitor count rate with an amplitude of 0.9 %. At the snow depth of 80 cm, the neutron monitor count rate decreases by about 8 %. The observed variations should be attributed to the meteorological effects of cosmic rays. The absorption coefficient of neutrons in the snow was also found from the correlation between the count rate of the neutron monitor and the amount of snow above the detector. We propose a real-time correction of the neutron monitor data for precipitation in the form of snow. For this purpose, we implement continuous monitoring of the amount of snow cover. The monitoring is provided by a snow meter made using a laser rangefinder module. We discuss the results obtained.


2021 ◽  
Vol 9 (2C) ◽  
Author(s):  
Rosane Moreira Ribeiro ◽  
Denison Souza-Santos
Keyword(s):  

Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
Alexander Mishev ◽  
Stepan Poluianov

AbstractCosmic rays, high-energy subatomic particles of extraterrestrial origin, are systematically measured by space-borne and ground-based instruments. A specific interest is paid to high-energy ions accelerated during solar eruptions, so-called solar energetic particles. In order to build a comprehensive picture of their nature, it is important to fill the gap and inter-calibrate ground-based and space-borne instruments. Here, we focus on ground-based detectors, specifically neutron monitors, which form a global network and provide continuous recording of cosmic ray intensity and its variability, used also to register relativistic solar energetic particles. The count rate of each neutron monitor is determined by the geomagnetic and atmospheric cut-offs, both being functions of the location. Here, on the basis of Monte Carlo simulations with the PLANETOCOSMICS code and by the employment of a new verified neutron monitor yield function, we assessed the atmospheric cut-off as a function of the altitude, as well as for specific stations located in the polar region. The assessed in this study altitude profile of the atmospheric cut-off for primary cosmic rays builds the basis for the joint analysis of strong solar proton events with different instruments and allows one to clarify recent definitions and related discussions about the new sub-class of events, so-called sub-ground-level enhancements (sub-GLEs).


2021 ◽  
Vol 9 ◽  
Author(s):  
Jaroslav Chum ◽  
Marek Kollárik ◽  
Ivana Kolmašová ◽  
Ronald Langer ◽  
Jan Rusz ◽  
...  

A relationship between the heliospheric magnetic field, atmospheric electric field, lightning activity, and secondary cosmic rays measured on the high mount of Lomnický Štít (2,634 m a.s.l.), Slovakia, during the declining phase of the solar cycle 24 is investigated with a focus on variations related to solar rotation (about 27 days). The secondary cosmic rays are detected using a neutron monitor and the detector system SEVAN, which distinguishes between different particles and energies. Using spectral analysis, we found distinct ∼27-day periodicities in variations of Bx and By components of the heliospheric magnetic field and in pressure-corrected measurements of secondary cosmic rays. The 27-day variations of secondary cosmic rays, on average, advanced and lagged the variations of Bx and By components by about 40° and −140°, respectively. Distinct 27-day periodicities were found both in the neutron monitor and the SEVAN upper and middle detector measurements. A nondominant periodicity of ∼27 days was also found for lightning activity. A cross-spectral analysis between fluctuation of the lightning activity and fluctuation of the heliospheric magnetic field (HMF) showed that fluctuation of the lightning activity was in phase and in antiphase with Bx and By components of the HMF, respectively, which is in agreement with previous studies investigating the influence of solar activity on lightning. On the other hand, the ∼27-day periodicity was not significant in the atmospheric electric field measured in Slovakia and Czechia. Therefore, no substantial influence of Bx and By on the atmospheric electric field was observed at these middle-latitude stations.


2021 ◽  
Author(s):  
Silvia Dalla ◽  
Alessandro Bruno ◽  
Timo Laitinen ◽  
Georgia DeNolfo ◽  
James Ryan ◽  
...  

2021 ◽  
Author(s):  
Kullapha Chaiwongkhot ◽  
David Ruffolo ◽  
Wittawat Yamwong ◽  
Jirawat Prabket ◽  
Pierre-Simon Mangeard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document