scholarly journals Anytime parallel tempering

2021 ◽  
Vol 31 (6) ◽  
Author(s):  
Alix Marie d’Avigneau ◽  
Sumeetpal S. Singh ◽  
Lawrence M. Murray

AbstractDeveloping efficient MCMC algorithms is indispensable in Bayesian inference. In parallel tempering, multiple interacting MCMC chains run to more efficiently explore the state space and improve performance. The multiple chains advance independently through local moves, and the performance enhancement steps are exchange moves, where the chains pause to exchange their current sample amongst each other. To accelerate the independent local moves, they may be performed simultaneously on multiple processors. Another problem is then encountered: depending on the MCMC implementation and inference problem, local moves can take a varying and random amount of time to complete. There may also be infrastructure-induced variations, such as competing jobs on the same processors, which arises in cloud computing. Before exchanges can occur, all chains must complete the local moves they are engaged in to avoid introducing a potentially substantial bias (Proposition 1). To solve this issue of randomly varying local move completion times in multi-processor parallel tempering, we adopt the Anytime Monte Carlo framework of (Murray, L. M., Singh, S., Jacob, P. E., and Lee, A.: Anytime Monte Carlo. arXiv preprintarXiv:1612.03319, (2016): we impose real-time deadlines on the parallel local moves and perform exchanges at these deadlines without any processor idling. We show our methodology for exchanges at real-time deadlines does not introduce a bias and leads to significant performance enhancements over the naïve approach of idling until every processor’s local moves complete. The methodology is then applied in an ABC setting, where an Anytime ABC parallel tempering algorithm is derived for the difficult task of estimating the parameters of a Lotka–Volterra predator-prey model, and similar efficiency enhancements are observed.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Eugenia Koblents ◽  
Inés P. Mariño ◽  
Joaquín Míguez

In this paper we investigate Monte Carlo methods for the approximation of the posterior probability distributions in stochastic kinetic models (SKMs). SKMs are multivariate Markov jump processes that model the interactions among species in biological systems according to a set of usually unknown parameters. The tracking of the species populations together with the estimation of the interaction parameters is a Bayesian inference problem for which Markov chain Monte Carlo (MCMC) methods have been a typical computational tool. Specifically, the particle MCMC (pMCMC) method has been shown to be effective, while computationally demanding method applicable to this problem. Recently, it has been shown that an alternative approach to Bayesian computation, namely, the class of adaptive importance samplers, may be more efficient than classical MCMC-like schemes, at least for certain applications. For example, the nonlinear population Monte Carlo (NPMC) algorithm has yielded promising results with a low dimensional SKM (the classical predator-prey model). In this paper we explore the application of both pMCMC and NPMC to analyze complex autoregulatory feedback networks modelled by SKMs. We demonstrate numerically how the populations of the relevant species in the network can be tracked and their interaction rates estimated, even in scenarios with partial observations. NPMC schemes attain an appealing trade-off between accuracy and computational cost that can make them advantageous in many practical applications.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


Sign in / Sign up

Export Citation Format

Share Document