scholarly journals Short Fatigue Crack Behavior of LZ50 Axle Steel Under Rotating-Bending Cyclic Loading

2018 ◽  
Vol 50 (1) ◽  
pp. 193-202 ◽  
Author(s):  
B. Yang ◽  
S. Dai ◽  
Y. Y. Wu ◽  
Z. Liao ◽  
S. Liang ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1267
Author(s):  
Yahang Qin ◽  
Bing Yang ◽  
Bo Feng ◽  
Yifan Li ◽  
Shoune Xiao ◽  
...  

In this study, the short fatigue crack behavior in a precipitation-strengthened CuNi2Si alloy was investigated using a replica technique under rotating bending loads with periodic overloads, an overload ratio of 1.5, and the stress ratio of both was R = −1. The results show that all the fatigue cracks originated from the surface of the specimen and displayed a trend of slow initiation and then rapid propagation. The introduction of overloads significantly reduced the fatigue crack initiation time and the fatigue life of the sample. The average life of the overloaded samples was only 31% that of the constant load samples. For overload specimens, multiple cracks grew at the same time and merged at different stages, causing the crack length to increase instantaneously after they merged, thereby considerably reducing the fatigue life. Fractographical analysis and observation of the surface-etched sample replica film showed that cracks in samples with and without overload both propagated along the grain boundaries.


2018 ◽  
Vol 13 ◽  
pp. 1427-1432 ◽  
Author(s):  
Vishal Singh ◽  
Rajwinder Singh ◽  
Amanjot Singh ◽  
Dhiraj K. Mahajan

Author(s):  
Li H. Wang

Fatigue crack growth rates (FCGR) of sensitized austenitic stainless steel (SS) were measured in simulated BWR water at 288 °C using compact tension specimens under different cyclic loading modes, including saw-tooth, trapezoidal and constant loading pattern. This study tested sensitized SS in normal water chemistry (NWC) and hydrogen water chemistry (HWC) respectively, and attempted to clarify the effect of low electrochemical corrosion potential on the FCGR of sensitized stainless steel. Significant environment effects on FCGR of sensitized stainless steel were observed in both water chemistries when compared with air fatigue curve. The pronounced suppression effect of HWC on crack growth in statically sustained load was not observed in cyclic loading condition. ASME curve doesn’t seem to be conservative and could not bound all the FCGR data tested in this study. In contrast, all of the measured FCGR data were bound by the JSME disposition curve. PLEDGE model proposed by General Electric reasonably predicted the FCGR of sensitized SS in NWC, but underestimated the FCGR in HWC. ANL’s superposition model successfully estimated the FCGR measured in both water chemistries. The fractography exhibited transgranular fracture mode during the crack initiation and growth stage. No differences in the appearance of fracture surface were observed in HWC and NWC. Only in very high DO environments, the sensitized 304 SS exhibited the mixed mode of intergranular and transgranular during growth stage.


2016 ◽  
Vol 2 ◽  
pp. 3010-3017 ◽  
Author(s):  
Pavel Hutař ◽  
Jan Poduška ◽  
Alice Chlupová ◽  
Miroslav Šmíd ◽  
Tomáš Kruml ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document