Elastoplastic Model for Sand and Clay Suitable For Describing the Cyclic Loading Response

Author(s):  
Z. Wan ◽  
W. S. Gao ◽  
L. Y. Xie
2020 ◽  
Vol 15 ◽  
pp. 25
Author(s):  
Ivan Gudoshnikov ◽  
Mikhail Kamenskii ◽  
Oleg Makarenkov ◽  
Natalia Voskovskaia

We offer a finite-time stability result for Moreau sweeping processes on the plane with periodically moving polyhedron. The result is used to establish the convergence of stress evolution of a simple network of elastoplastic springs to a unique cyclic response in just one cycle of the external displacement-controlled cyclic loading. The paper concludes with an example showing that smoothing the vertices of the polyhedron makes finite-time stability impossible.


2015 ◽  
Vol 21 (7) ◽  
pp. 854-865 ◽  
Author(s):  
Kuangmin Wei ◽  
Sheng Zhu

In this research, a simplified rotational kinematic hardening model with the concept of sub-loading was used to predict behaviors of Concrete-Faced Rock-fill Dam under complex loading conditions. The model can overcome the shortcomings of classic elastoplastic model (i.e. soil behaviors under cyclic loading-unloading can be predicted). Elastoplastic formula of the model was presented in detail. Then this model was verified with test results of coarse grained soils, under both monotonic loading and cyclic loading-unloading conditions. This model was also applied to analyze deformation of Shuibuya rock-fill dam, computed results and in-situ measurements are compared. Results showed that computed results were consistent with in-situ measurements in both construction and operation period. Results also showed that permanent deformation that was caused by fluctuations of the reservoir level can also be predicted by this rotational kinematic hardening model.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


Sign in / Sign up

Export Citation Format

Share Document