Effect of Incremental Displacement on the Fracture Resistance Curve of Nuclear Piping Materials under Reverse Cyclic Loading

2017 ◽  
Vol 55 (2) ◽  
pp. 85-90
Author(s):  
Sang-Young Kim
1999 ◽  
Vol 191 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Chang Sung Seok ◽  
Young Jin Kim ◽  
Jong Il Weon

Author(s):  
I. S. Kamantsev ◽  
◽  
Yu. N. Loginov ◽  
S. V. Belikov ◽  
S. I. Stepanov ◽  
...  

An example of samples with a cellular architecture, obtained by selective laser melting, is used to study the influence of the building direction of cellular objects on the characteristics of fracture under cyclic loading. The origin of their fracture has been revealed. The mechanism providing increased fatigue fracture resistance of objects which, along with the cellular structure, have anisotropy of properties due to the technological features of their production has been determined.


2019 ◽  
Vol 211 ◽  
pp. 47-60 ◽  
Author(s):  
Tianyao Liu ◽  
Xudong Qian ◽  
Wei Wang ◽  
Yiyi Chen

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1623 ◽  
Author(s):  
Ting-Hsun Lan ◽  
Chin-Yun Pan ◽  
Pao-Hsin Liu ◽  
Mitch M. C. Chou

The aim of this study is to determine the minimum required thickness of a monolithic zirconia crown in the mandibular posterior area for patients with bruxism. Forty-nine full zirconia crowns, with seven different occlusal thicknesses of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm, were made by using a computer-aided design/computer-aided manufacturing system (CAD/CAM). Seven crowns in each group were subjected to cyclic loading at 800 N and 5 Hz in a servohydraulic testing machine until fracture or completion of 100,000 cycles. Seven finite element models comprising seven different occlusal thicknesses of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm were simulated using three different loads of vertical 800 N, oblique 10 degrees 800 N, and vertical 800 N + x N torque (x = 10, 50, and 100). The results of cyclic loading tests showed that the fracture resistance of the crown was positively associated with thickness. Specimen breakage differed significantly according to the different thicknesses of the prostheses (p < 0.01). Lowest von Mises stress values were determined for prostheses with a minimal thickness of 1.0 mm in different loading directions and with different forces. Zirconia specimens of 1.0 mm thickness had the lowest stress values and high fracture resistance and under 800 N of loading.


Sign in / Sign up

Export Citation Format

Share Document