residual stress relaxation
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Yong-Cheng Lin ◽  
Jiang-Shan Zhu ◽  
Jia-Yang Chen ◽  
Jun-Quan Wang

AbstractMarginal-restraint mandrel-free spinning is an advanced technology for manufacturing ellipsoidal heads with large diameter-thickness ratios. Nevertheless, the spinning-induced residual stress, which greatly influences the in-service performance of spun heads, should be removed. In this study, the effects of annealing on the residual-stress relaxation behavior of 5052H32 aluminum alloy spun heads were investigated. It is found that the residual stress first rapidly decreases and then remains steady with the increase in annealing time at the tested annealing temperatures. The relaxation of the residual stress becomes increasingly obvious with the increase in annealing temperature. When the annealing temperature is less than 220 °C, there are no obvious changes in grain size. Moreover, the spinning-induced dislocations are consumed by the static recovery behavior, which decreases the residual stress during annealing. When the annealing temperature is approximately 300 °C, the broken grains transform into equiaxed grains. In addition, static recrystallization and recovery behaviors occur simultaneously to promote the relaxation of the residual stress. Considering the different stress relaxation mechanisms, a model based on the Zener-Wert-Avrami equation was established to predict the residual-stress relaxation behavior. Finally, the optimized annealing temperature and time were approximately 300 °C and 30 min, respectively.


Author(s):  
Erfan Maleki ◽  
Okan Unal ◽  
Mario Guagliano ◽  
Sara Bagherifard

AbstractIn this study, the effect of kinetic energy of the shot peening process on microstructure, mechanical properties, residual stress, fatigue behavior and residual stress relaxation under fatigue loading of AISI 316L stainless steel were investigated to figure out the mechanisms of fatigue crack initiation and failure. Varieties of experiments were applied to obtain the results including microstructural observations, measurements of hardness, roughness, induced residual stress and residual stress relaxation as well as axial fatigue test. Then deep learning approach through neural networks was used for modelling of mechanical properties and fatigue behavior of shot peened material. Comprehensive parametric analyses were performed to survey the effects of different key parameters. Afterward, according to the results of neural network analysis, further experiments were performed to optimize and experimentally validate the desirable parameters. Based on the obtained results the favorable range of shot peening coverage regarding improved mechanical properties and fatigue behavior was identified as no more than 1750% considering Almen intensity of 21 A (0.001 inch). Graphic abstract


Author(s):  
Jan Schubnell ◽  
Eva Carl ◽  
Majid Farajian ◽  
Stefanos Gkatzogiannis ◽  
Peter Knödel ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Jin Gan ◽  
Zi’ang Gao ◽  
Yiwen Wang ◽  
Zhou Wang ◽  
Weiguo Wu

Ship hatch corner is a common structure in a ship and its fatigue problem has always been one of the focuses in ship engineering due to the long–term high–stress concentration state during the ship’s life. For investigating the fatigue life improvement of the ship hatch corner under different shot peening (SP) treatments, a series of fatigue tests, residual stress and surface topography measurements were conducted for SP specimens. Furthermore, the distributions of the surface residual stress are measured with varying numbers of cyclic loads, investigating the residual stress relaxation during cyclic loading. The results show that no matter which SP process parameters are used, the fatigue lives of the shot–peened ship hatch corner specimens are longer than those at unpeened specimens. The relaxation rate of the residual stress mainly depends on the maximum compressive residual stress (σRSmax) and the depth of the maximum compressive residual stress (δmax). The larger the values of σRSmax and δmax, the slower the relaxation rates of the residual stress field. The results imply that the effect of residual stress field and surface roughness should be considered comprehensively to improve the fatigue life of the ship hatch corner with SP treatment. The increase in peening intensity (PI) within a certain range can increase the depth of the compressive residual stress field (CRSF), so the fatigue performance of the ship hatch corner is improved. Once the PI exceeds a certain value, the surface damage caused by the increase in surface roughness will not be offset by the CRSF and the fatigue life cannot be improved optimally. This research provides an approach of fatigue performance enhancement for ship hatch corners in engineering application.


2021 ◽  
Vol 36 (1) ◽  
pp. 13-25
Author(s):  
M. R. Soleimany ◽  
M. Jamal-Omidi ◽  
S. M. Nabavi ◽  
M. Tavakolian

Abstract The residual stresses play a significant role in the mechanical properties and strengthening capability of nanocomposites. The present research aims to numerically investigate the residual stress relaxation in nanotube-reinforced polymers in response to mechanical tensile loading. The systems under study consist of the armchair and zigzag single-walled carbon nanotubes (SWCNT) embedded in a polymer matrix. The nanotubes and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones (L-J) potential at the interface. The interactions between carbon atoms in the nanotube and nodes in the polymer matrix are modelled by equivalent springs. In order to evaluate the analysis of elastic-perfectly plastic using finite element (FE) modelling, first, relaxation of the plastic residual stresses on steel hemisphere in contact with a rigid flat surface was examined in a loading-unloading cycle and verified with available data. Afterwards, the residual stress relaxation in nanotubes with different space-frame structures was computed due to displacement-controlled loading. Finally, the stress state and the plastic residual stresses in the nanocomposite for different carbon nanotube content were analyzed and discussed during loading and unloading. Regarding the effect of tensile stress, it was revealed that nanotube structures have significant effects on the residual stresses created in the nanocomposite.


2021 ◽  
Vol 1016 ◽  
pp. 819-825
Author(s):  
Li Na Yu ◽  
Kazuyoshi Saida ◽  
Masahito Mochizuki ◽  
Kazutoshi Nishimoto ◽  
Naoki Chigusa

Stress corrosion cracking (SCC) is one of serious aging degradation problems for the Alloy 600 components of pressurized water reactors (PWRs). In order to prevent SCC, various methods such as water jet peening (WJP), laser peening (LP), surface polishing have been used to introduce compressive stresses at the surfaces of the PWR components. However, it has been reported that such compressive residual stress introduced by these methods might be relaxed during the practical operation, because of high temperature environment. In this study, the hardness reduction behavior of the Alloy 600 processed by LP, Buff and WJP in the thermal aging process has been investigated to estimate the stability of the residual stress improving effect by each method, based on the fact that there is a correlation between the compressive residual stress relaxation and the decrease of hardness. The behavior of the residual stress relaxation in the processed materials in the high temperature environment has been discussed with kinetic analysis.


Sign in / Sign up

Export Citation Format

Share Document