Quantum chemical properties investigation and molecular docking analysis with DNA topoisomerase II of β-carboline indole alkaloids from Simaba guianensis: a combined experimental and theoretical DFT study

2017 ◽  
Vol 29 (1) ◽  
pp. 299-314 ◽  
Author(s):  
Renyer A. Costa ◽  
Kelson M. T. Oliveira ◽  
Rita de Cássia Saraiva Nunomura ◽  
Earle Silva A. Junior ◽  
Maria Lucia B. Pinheiro ◽  
...  
2021 ◽  
Vol 17 (1) ◽  
pp. 249-265
Author(s):  
Selvaraj Ayyamperumal ◽  

The enzyme, α-topoisomerase II (α-Topo II), is known to regulate efficiently the topology of DNA. It is highly expressed in rapidly proliferating cells and plays an important role in replication, transcription and chromosome organisation. This has prompted several investigators to pursue α-Topo II inhibitors as anticancer agents. δ-Carboline, a natural product, and its synthetic derivatives are known to exert potent anticancer activity by selectively targeting α-Topo II. Therefore, it is of interest to design carboline derivatives fused with pyrrolidine-2,5-dione in this context. δ-Carbolines fused with pyrrolidine-2,5-dione are of interest because the succinimide part of fused heteroaromatic molecule can interact with the ATP binding pocket via the hydrogen bond network with selectivity towards α-Topo II. The 300 derivatives designed were subjected to the Lipinski rule of 5, ADMET and toxicity prediction. The designed compounds were further analysed using molecular docking analysis on the active sites of the α-Topo II crystal structure (PDB ID:1ZXM). Molecular dynamic simulations were also performed to compare the binding mode and stability of the protein-ligand complexes. Compounds with ID numbers AS89, AS104, AS119, AS209, AS239, AS269, and AS299 show good binding activity compared to the co-crystal ligand. Molecular Dynamics simulation studies show that the ligand binding to α-Topo II in the ATP domain is stableand the protein-ligand conformation remains unchanged. Binding free energy calculations suggest that seven molecules designed are potential inhibitors for α-Topo II for further consideration as anticancer agents.


2021 ◽  
Vol 17 (5) ◽  
pp. 557-567
Author(s):  
Mallikarjun S Beelagi ◽  

Acute bronchitis is a lower respiratory tract lung infection that causes bronchial inflammation. The known protein drug targets are peptidoglycan D, Dtranspeptidase, and DNA topoisomerase 4 subunit A for bronchitis linked infections. These are the membrane associated macromolecules which takes a major role in the formation of cell wall membrane by synthesising the cross-linked peptidoglycan. Therefore, it is of interest to design molecules with improved binding features with these protein targets. Hence, we document the molecular docking analysis data of four phytocompounds from Acacia farnesiana having optimal binding features with these targets linked to bronchitis for further consideration.


Sign in / Sign up

Export Citation Format

Share Document