scholarly journals A simplistic computational procedure for tunneling splittings caused by proton transfer

Author(s):  
Denis S. Tikhonov

AbstractIn this manuscript, we present an approach for computing tunneling splittings for large amplitude motions. The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule. The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work, we also investigate the performance of different DFT and post-Hartree–Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.

2021 ◽  
Author(s):  
Denis S. Tikhonov

Abstract In this manuscript we present an approach for computing tunneling splittings for large amplitude motions. The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule. The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work we also investigate the performance of different DFT and post-Hartree-Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.


2021 ◽  
Author(s):  
Denis Tikhonov

In this manuscript we present an approach for computing tunneling splittings for large amplitude motions. <br>The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule.<br>The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work we also investigate the performance of different DFT and post-Hartree-Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.<br>


2021 ◽  
Author(s):  
Denis Tikhonov

In this manuscript we present an approach for computing tunneling splittings for large amplitude motions. <br>The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule.<br>The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work we also investigate the performance of different DFT and post-Hartree-Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.<br>


2021 ◽  
Author(s):  
Denis Tikhonov

In this manuscript we present an approach for computing tunneling splittings for large amplitude motions. <br>The core of the approach is a solution of an effective one-dimensional Schrödinger equation with an effective mass and an effective potential energy surface composed of electronic and harmonic zero-point vibrational energies of small amplitude motions in the molecule.<br>The method has been shown to work in cases of three model motions: nitrogen inversion in ammonia, single proton transfer in malonaldehyde, and double proton transfer in the formic acid dimer. In the current work we also investigate the performance of different DFT and post-Hartree-Fock methods for prediction of the proton transfer tunneling splittings, quality of the effective Schrödinger equation parameters upon the isotopic substitution, and possibility of a complete basis set (CBS) extrapolation for the resulting tunneling splittings.<br>


1995 ◽  
Vol 02 (01) ◽  
pp. 71-79
Author(s):  
D.M.C. NICHOLSON ◽  
G.M. STOCKS ◽  
Y. WANG ◽  
W.A. SHELTON ◽  
Z. SZOTEK ◽  
...  

The accuracy of energy differences calculated from first principles within the local density approximation (LDA) has been demonstrated for a large number of systems. Armed with these energy differences researchers are addressing questions of phase stability and structural relaxation. However, these techniques are very computationally intensive and are therefore not being used for the simulation of large complex systems. Many of the methods for solving the Kohn-Sham equations of the LDA rely on basis set methods for solution of the Schrodinger equation. An alternative approach is multiple scattering theory (MST). We feel that the locally exact solutions of the Schrodinger equation which are at the heart of the multiple scattering method give the method an efficiency which cannot be ignored in the search for methods with which to attack large systems. Furthermore, the analytic properties of the Green function which is determined directly in MST result in computational shortcuts.


Sign in / Sign up

Export Citation Format

Share Document