Use case-based evaluation of workflow optimization strategy in real-time computation system

2019 ◽  
Vol 76 (1) ◽  
pp. 708-725
Author(s):  
Saima Gulzar Ahmad ◽  
Hikmat Ullah Khan ◽  
Samia Ijaz ◽  
Ehsan Ullah Munir
Fuel Cells ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 809-823 ◽  
Author(s):  
N. Bizon ◽  
G. Iana ◽  
E. Kurt ◽  
P. Thounthong ◽  
M. Oproescu ◽  
...  

2014 ◽  
Vol 23 (01) ◽  
pp. 27-35 ◽  
Author(s):  
S. de Lusignan ◽  
S-T. Liaw ◽  
C. Kuziemsky ◽  
F. Mold ◽  
P. Krause ◽  
...  

Summary Background: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive. Objective: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines. Method: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars. Results: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowd-sourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the “internet of things”, and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources. Conclusions: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.


Author(s):  
Nina Rannharter ◽  
Sarah Teetor

Due to the complex nature of archival images, it is an ongoing challenge to establish a metadata architecture and metadata standards that are easy to navigate and take into consideration future requirements. This contribution will present a use case in the humanities based on the Digital Research Archive for Byzantium (DiFAB) at the University of Vienna. Tracing one monument and its photographic documentation, this paper will highlight some issues concerning metadata for images of material culture, such as: various analog and digital forms of documentation; available thesauri – including problems of historical geography, multilingualism, and culturally specific terminologies –; and the importance of both precise and imprecise dating for cultural historians and their research archives.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dongbo Liu ◽  
Jian Lu ◽  
Wanjing Ma

One-way carsharing system has been widely adopted in the carsharing field due to its flexible services. However, as one of the main limitations of the one-way carsharing system, the imbalance between supply and demand needs to be solved. Predicting pick-up demand has been studied to achieve the goal, but using returned vehicles to reduce unnecessary relocation is also one of the important methods. Nowadays, trajectory data and other data are available for real-time prediction for return demand. Based on the return demand prediction, the relocation response can be more reasonable. Thus, the balance of demand and supply can be largely improved. The multisource data include trajectory data, user application log data, order data, station data, and user characteristic data. Based on these data, a return demand prediction model was used to predict whether the user will return the vehicle in 15 min in real time, and a destination station prediction model was applied to forecast which station the user will park at. Finally, a case study using ten stations’ one-week field data was conducted to test the benefit of the dynamic return demand prediction. The results showed that the return demand prediction improves the efficiency of the relocations by mitigating the condition that the station parking space is full or empty. The potential application of this study would effectively reduce unnecessary relocation and further formulate an active operation optimization strategy to reduce the system’s operational cost and improve the service quality of the system.


Sign in / Sign up

Export Citation Format

Share Document