A Review on Automated Cancer Detection in Medical Images using Machine Learning and Deep Learning based Computational Techniques: Challenges and Opportunities

Author(s):  
Jatinder Manhas ◽  
Rachit Kumar Gupta ◽  
Partha Pratim Roy
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyunkwang Lee ◽  
Chao Huang ◽  
Sehyo Yune ◽  
Shahein H. Tajmir ◽  
Myeongchan Kim ◽  
...  

Abstract Recent advancements in deep learning for automated image processing and classification have accelerated many new applications for medical image analysis. However, most deep learning algorithms have been developed using reconstructed, human-interpretable medical images. While image reconstruction from raw sensor data is required for the creation of medical images, the reconstruction process only uses a partial representation of all the data acquired. Here, we report the development of a system to directly process raw computed tomography (CT) data in sinogram-space, bypassing the intermediary step of image reconstruction. Two classification tasks were evaluated for their feasibility of sinogram-space machine learning: body region identification and intracranial hemorrhage (ICH) detection. Our proposed SinoNet, a convolutional neural network optimized for interpreting sinograms, performed favorably compared to conventional reconstructed image-space-based systems for both tasks, regardless of scanning geometries in terms of projections or detectors. Further, SinoNet performed significantly better when using sparsely sampled sinograms than conventional networks operating in image-space. As a result, sinogram-space algorithms could be used in field settings for triage (presence of ICH), especially where low radiation dose is desired. These findings also demonstrate another strength of deep learning where it can analyze and interpret sinograms that are virtually impossible for human experts.


Author(s):  
Janani Viswanathan ◽  
N. Saranya ◽  
Abinaya Inbamani

Deep learning (DL) and artificial intelligence (AI) are emerging tools in the healthcare sector for medical diagnostics. This chapter elaborates on general reasons for the popularity of computational techniques such as deep learning and machine learning (ML) applications in the medical image processing domain. The initial part of this chapter focuses on reviewing the fundamental concepts of DL algorithms, competence with machine learning, need in healthcare, applications, and challenges in medical image processing. Doing so allows understanding the reasons for the construction of all of them and offers a different view on various domains in the medical sector. The tools and technology required for DL, selection, implementation, optimization, and testing are discussed with respect to an application of cancer detection. Thus, this chapter gives an overall vision of deep learning concepts related to biomedical research.


2020 ◽  
pp. 1-16
Author(s):  
Deepika Kumar ◽  
Usha Batra

Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. However, Machine learning algorithms have given rise to progress across different domains. There are various diagnostic methods available for cancer detection. However, cancer detection through histopathological images is considered to be more accurate. In this research, we have proposed the Stacked Generalized Ensemble (SGE) approach for breast cancer classification into Invasive Ductal Carcinoma+ and Invasive Ductal Carcinoma-. SGE is inspired by the stacking model which utilizes output predictions. Here, SGE uses six deep learning models as level-0 learner models or sub-models and Logistic regression is used as Level – 1 learner or meta – learner model. Invasive Ductal Carcinoma dataset for histopathology images is used for experimentation. The results of the proposed methodology have been compared and analyzed with existing machine learning and deep learning methods. The results demonstrate that the proposed methodology performed exponentially good in image classification in terms of accuracy, precision, recall, and F1 measure.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5097 ◽  
Author(s):  
Satya P. Singh ◽  
Lipo Wang ◽  
Sukrit Gupta ◽  
Haveesh Goli ◽  
Parasuraman Padmanabhan ◽  
...  

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.


2021 ◽  
Vol 6 (22) ◽  
pp. 36-50
Author(s):  
Ali Hassan ◽  
Riza Sulaiman ◽  
Mansoor Abdullateef Abdulgabber ◽  
Hasan Kahtan

Recent advances in artificial intelligence, particularly in the field of machine learning (ML), have shown that these models can be incredibly successful, producing encouraging results and leading to diverse applications. Despite the promise of artificial intelligence, without transparency of machine learning models, it is difficult for stakeholders to trust the results of such models, which can hinder successful adoption. This concern has sparked scientific interest and led to the development of transparency-supporting algorithms. Although studies have raised awareness of the need for explainable AI, the question of how to meet real users' needs for understanding AI remains unresolved. This study provides a review of the literature on human-centric Machine Learning and new approaches to user-centric explanations for deep learning models. We highlight the challenges and opportunities facing this area of research. The goal is for this review to serve as a resource for both researchers and practitioners. The study found that one of the most difficult aspects of implementing machine learning models is gaining the trust of end-users.


Author(s):  
Tony Hey ◽  
Keith Butler ◽  
Sam Jackson ◽  
Jeyarajan Thiyagalingam

This paper reviews some of the challenges posed by the huge growth of experimental data generated by the new generation of large-scale experiments at UK national facilities at the Rutherford Appleton Laboratory (RAL) site at Harwell near Oxford. Such ‘Big Scientific Data’ comes from the Diamond Light Source and Electron Microscopy Facilities, the ISIS Neutron and Muon Facility and the UK's Central Laser Facility. Increasingly, scientists are now required to use advanced machine learning and other AI technologies both to automate parts of the data pipeline and to help find new scientific discoveries in the analysis of their data. For commercially important applications, such as object recognition, natural language processing and automatic translation, deep learning has made dramatic breakthroughs. Google's DeepMind has now used the deep learning technology to develop their AlphaFold tool to make predictions for protein folding. Remarkably, it has been able to achieve some spectacular results for this specific scientific problem. Can deep learning be similarly transformative for other scientific problems? After a brief review of some initial applications of machine learning at the RAL, we focus on challenges and opportunities for AI in advancing materials science. Finally, we discuss the importance of developing some realistic machine learning benchmarks using Big Scientific Data coming from several different scientific domains. We conclude with some initial examples of our ‘scientific machine learning’ benchmark suite and of the research challenges these benchmarks will enable. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


2021 ◽  
Vol 83 ◽  
pp. 9-24
Author(s):  
Isabella Castiglioni ◽  
Leonardo Rundo ◽  
Marina Codari ◽  
Giovanni Di Leo ◽  
Christian Salvatore ◽  
...  

Author(s):  
Santosh Bothe ◽  
Mrunmayee Inamke ◽  
Uttara Patidar ◽  
Rutvi Ordia

Technical developments are being done in medical field. In order to improve medical results and healthcare facilities, machine learning and deep learning concepts are being used. Various experiments and efforts are done to detect diseases and provide platforms to provide better healthcare. Involvement of technology has made healthcare field more efficient and trustworthy. The ‘Medical Image Analytics’ is a machine learning as well as deep learning tool that would provide platform for processing medical images and extracting features not visible to human eye and provide accurate results and help to healthcare organizations. It strives to help healthcare organization for providing better healthcare facilities. This project is intended for use in various healthcare fields and organizations. Some features of the disease in medical images can be nit invisible or not clear to human eyes. Improper detection of features can lead to improper detection of diseases and may lead to failure or degradation in health and healthcare facilities. Thus, using techniques like deep learning and machine learning increases the detection of features in medical images. Also, it is helpful if diseases can be detected at an early stage and therefore, the project would aim to detect diseases at an early stage in future.


Author(s):  
Khalid Raza ◽  
Nripendra Kumar Singh

Background: Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. Objectives: The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. Conclusion: Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.


Sign in / Sign up

Export Citation Format

Share Document