Using machine learning to detect PII from attributes and supporting activities of information assets

Author(s):  
Yu-Chih Wei ◽  
Tzu-Yin Liao ◽  
Wei-Chen Wu

Author(s):  
Ryosuke Konishi ◽  
Fumito Nakamura ◽  
Yasushi Kiyoki

While individuals benefit from the goods and services provided by companies that enrich their lives and that have adapted to a dynamic environment that is always changing, these companies pay a high communication cost to access opportunities to provide these goods and services and to seek a better understanding of individual customers’ changing needs. Although vast amounts of information can be obtained, databases and machine learning are playing an increasingly important role in extracting meaning from this information, turning it into meaningful information assets that consider circumstances and contexts, and individualizing the economy of information. I propose an implementation method for providing information to enrich the profiles of individual customers by consolidating different data, calculating the individual customers’ needs through the relationships between customers and products, evaluating the change in relationships between individual customers and products over time, and providing goods and services to suit different intervals of change to factors such as lifestyle and living environment. As there are different factors involved in estimating the incidence of needs, and different frequencies and rates at which they occur, based on the special characteristics of products, different data are required to estimate such needs. By profiling individuals over the long term, it is possible to build an information provision environment that is conducive to companies’ customer acquisition.



2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.



2020 ◽  
Author(s):  
Man-Wai Mak ◽  
Jen-Tzung Chien


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  


2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  


Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols


Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  




2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang


Sign in / Sign up

Export Citation Format

Share Document