Effects of water level and temperature on performance of four Sphagnum mosses

Plant Ecology ◽  
2006 ◽  
Vol 190 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Bjorn J.M. Robroek ◽  
Juul Limpens ◽  
Angela Breeuwer ◽  
Matthijs G.C. Schouten
Keyword(s):  
2019 ◽  
Author(s):  
Terhi Riutta ◽  
Aino Korrensalo ◽  
Anna M. Laine ◽  
Jukka Laine ◽  
Eeva-Stiina Tuittila

Abstract. Vegetation and hydrology are important controlling factors in peatland methane dynamics. This study aimed at investigating the role of vegetation components – sedges, dwarf-shrubs, and Sphagnum mosses – in methane fluxes of a boreal fen under natural and experimental water level drawdown conditions. We measured the fluxes during four growing seasons using static chamber technique in a field experiment where the role of the ecosystem components was assessed via plant removal treatments. The first year was a calibration year after which the water level drawdown and vegetation removal treatments were applied. Under natural water level conditions, plant-mediated fluxes comprised 68–78 % of the mean growing season flux (1.95 ± 0.21 g CH4 m−2 month−1 from June to September), of which Sphagnum mosses and sedges accounted for 1/4 and 3/4, respectively. The presence of dwarf shrubs, on the other hand, had a slightly attenuating effect on the fluxes. In water level drawdown conditions, the mean flux was close to zero (0.03 ± 0.03 g CH4 m−2 month−1) and the presence/absence of the plant groups had a negligible effect. In conclusion, water level acted as a switch; only in high water level conditions vegetation regulated the net fluxes. The results are relevant for assessing the response of peatland fluxes in changing climatic conditions, as water level drawdown and the consequent vegetation succession are the major projected impacts of climate change on northern peatlands.


2020 ◽  
Vol 17 (3) ◽  
pp. 727-740 ◽  
Author(s):  
Terhi Riutta ◽  
Aino Korrensalo ◽  
Anna M. Laine ◽  
Jukka Laine ◽  
Eeva-Stiina Tuittila

Abstract. Vegetation and hydrology are important controlling factors in peatland methane dynamics. This study aimed at investigating the role of vegetation components, sedges, dwarf shrubs, and Sphagnum mosses, in methane fluxes of a boreal fen under natural and experimental water level drawdown conditions. We measured the fluxes during growing seasons 2001–2004 using the static chamber technique in a field experiment where the role of the ecosystem components was assessed via plant removal treatments. The first year was a calibration year after which the water level drawdown and vegetation removal treatments were applied. Under natural water level conditions, plant-mediated fluxes comprised 68 %–78 % of the mean growing season flux (1.73±0.17 g CH4 m−2 month−1 from June to September), of which Sphagnum mosses and sedges accounted for one-fourth and three-fourths, respectively. The presence of dwarf shrubs, on the other hand, had a slightly attenuating effect on the fluxes. In water level drawdown conditions, the mean flux was close to zero (0.03±0.03 g CH4 m−2 month−1) and the presence and absence of the plant groups had a negligible effect. In conclusion, water level acted as a switch; only in natural water level conditions did vegetation regulate the net fluxes. The results are relevant for assessing the response of fen peatland fluxes to changing climatic conditions, as water level drawdown and the consequent vegetation succession are the major projected impacts of climate change on northern peatlands.


Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


Sign in / Sign up

Export Citation Format

Share Document