Giant virus-related sequences in the 5300-year-old Ötzi mummy metagenome

Virus Genes ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 222-227
Author(s):  
Gabriel Augusto Pires de Souza ◽  
Clara Rolland ◽  
Bariaa Nafeh ◽  
Bernard La Scola ◽  
Philippe Colson
Keyword(s):  
2011 ◽  
Vol 86 (3) ◽  
pp. 1844-1852 ◽  
Author(s):  
A. Cornelissen ◽  
S. C. Hardies ◽  
O. V. Shaburova ◽  
V. N. Krylov ◽  
W. Mattheus ◽  
...  

Viruses ◽  
2013 ◽  
Vol 5 (12) ◽  
pp. 2920-2930 ◽  
Author(s):  
Mondher Boughalmi ◽  
Isabelle Pagnier ◽  
Sarah Aherfi ◽  
Philippe Colson ◽  
Didier Raoult ◽  
...  

Science ◽  
2015 ◽  
Vol 349 (6255) ◽  
pp. 1501-1502
Author(s):  
B. R. Jasny
Keyword(s):  

2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Patrick Forterre

When the first giant virus, the mimivirus, was discovered in 1992, it was misidentified as a bacterium because it was too large to have been a virus by the current understanding. Ever since, biologists have been debating how viruses should be categorized and described. Are they living? Are they something else? What is their place on the tree of life?


Author(s):  
Sarah Aherfi ◽  
Djamal Brahim Belhaouari ◽  
Lucile Pinault ◽  
Jean-Pierre Baudoin ◽  
Philippe Decloquement ◽  
...  

ABSTRACTSince the discovery of Acanthamoeba polyphaga Mimivirus, the first giant virus of amoeba, the historical hallmarks defining a virus have been challenged. Giant virion sizes can reach up to 2.3 µm, making them visible by optical microscopy. They have large genomes of up to 2.5 Mb that encode proteins involved in the translation apparatus. Herein, we investigated possible energy production in Pandoravirus massiliensis, the largest of our giant virus collection. MitoTracker and TMRM mitochondrial membrane markers allowed for the detection of a membrane potential in virions that could be abolished by the use of the depolarizing agent CCCP. An attempt to identify enzymes involved in energy metabolism revealed that 8 predicted proteins of P. massiliensis exhibited low sequence identities with defined proteins involved in the universal tricarboxylic acid cycle (acetyl Co-A synthase; citrate synthase; aconitase; isocitrate dehydrogenase; α-ketoglutarate decarboxylase; succinate dehydrogenase; fumarase). All 8 viral predicted ORFs were transcribed together during viral replication, mainly at the end of the replication cycle. Two of these proteins were detected in mature viral particles by proteomics. The product of the ORF132, a predicted protein of P. massiliensis, cloned and expressed in Escherichia coli, provided a functional isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle, which converts isocitrate to α-ketoglutarate. We observed that membrane potential was enhanced by low concentrations of Acetyl-CoA, a regulator of the tricarboxylic acid cycle. Our findings show for the first time that energy production can occur in viruses, namely, pandoraviruses, and the involved enzymes are related to tricarboxylic acid cycle enzymes. The presence of a proton gradient in P. massiliensis coupled with the observation of genes of the tricarboxylic acid cycle make this virus a form a life for which it is legitimate to question ‘what is a virus?’.


Author(s):  
Frederik Schulz ◽  
Julien Andreani ◽  
Rania Francis ◽  
Jacques Yaacoub Bou Khalil ◽  
Janey Lee ◽  
...  

AbstractGiant viruses have large genomes, often within the size range of cellular organisms. This distinguishes them from most other viruses and demands additional effort for the successful recovery of their genomes from environmental sequence data. Here we tested the performance of genome-resolved metagenomics on a recently isolated giant virus, Fadolivirus, by spiking it into an environmental sample from which two other giant viruses were isolated. At high spike-in levels, metagenome assembly and binning led to the successful genomic recovery of Fadolivirus from the sample. A complementary survey of viral hallmark genes indicated the presence of other giant viruses in the sample matrix, but did not detect the two isolated from this sample. Our results indicate that genome-resolved metagenomics is a valid approach for the recovery of near-complete giant virus genomes given that sufficient clonal particles are present. Our data also underline that a vast majority of giant viruses remain currently undetected, even in an era of terabase-scale metagenomics.


2019 ◽  
Author(s):  
Jason R. Schrad ◽  
Jônatas S. Abrahão ◽  
Juliana R. Cortines ◽  
Kristin N. Parent

SummarySince their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four metastable infection intermediates in Samba virus (lineage A Mimiviridae) as visualized by cryo-EM, cryo-ET, and SEM. Each of these four intermediates reflects a stage that occurs in vivo. We show that these genome release stages are conserved in other, diverse giant viruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved amongst disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Virology ◽  
2018 ◽  
Vol 518 ◽  
pp. 423-433 ◽  
Author(s):  
Christopher R. Schvarcz ◽  
Grieg F. Steward
Keyword(s):  

Nature ◽  
2016 ◽  
Vol 540 (7632) ◽  
pp. 288-291 ◽  
Author(s):  
Matthias G. Fischer ◽  
Thomas Hackl

Sign in / Sign up

Export Citation Format

Share Document