host genome
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 85)

H-INDEX

35
(FIVE YEARS 5)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Yu-Chan Yang ◽  
Hung-Chih Yang

Hepatitis B virus (HBV) infection remains an important issue of global public health. Although current antiviral therapy has dramatically reduced the mortality and morbidity of chronic hepatitis B (CHB), it fails to cure it. Rebound viremia often occurs after stopping antiviral therapy. Persistent HBV covalently closed circular DNA (cccDNA) and integrated DNA under antiviral therapy form the major barrier to eradication of HBV infection. CRISPR-mediated genome editing has emerged as a promising therapeutic approach to specifically destroy persistent HBV genomes, both cccDNA and integrated DNA, for HBV cure. However, the cleavage of integrated HBV DNA by CRISPR-Cas9 will cause double-strand break (DSB) of host genome, raising a serious safety concern about genome instability and carcinogenesis. The newly developed CRISPR-derived base editors (BEs), which fuse a catalytically disabled nuclease with a nucleobase deaminase enzyme, can be used to permanently inactivate HBV genome by introducing irreversible point mutations for generation of premature stop codons without DSBs of host genome. Although promising, CRISPR-mediated base editing still faces daunting challenges before its clinical application, including the base-editing efficacy, the off-target effect, the difficulty in finding conserved target HBV sequences, and in vivo delivery efficiency. Several strategies have been adopted to optimize the efficiency and specificity of CRISPR-BEs and to improve in vivo delivery efficacy through novel viral and non-viral delivery approaches. Particularly, the non-viral delivery of Cas9 mRNA and ribonucleoprotein by lipid nanoparticles exhibits attractive potential for liver-targeted delivery in clinical. Along with all progress above, the CRISPR-mediated gene therapy will ultimately achieve HBV cure.


2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Caroline Meguerditchian ◽  
Ayse Ergun ◽  
Veronique Decroocq ◽  
Marie Lefebvre ◽  
Quynh-Trang Bui

2021 ◽  
Vol 12 ◽  
Author(s):  
Taotao Han ◽  
Xiaomin Hu ◽  
Kemin Li ◽  
Di Zhang ◽  
Yan Zhang ◽  
...  

Probiotics represents a promising intestinal microbiota-targeted therapeutic method for the treatment of ulcerative colitis (UC). Several lines of evidence implicate that Bifidobacterium infantis serves as a probiotic strain with proven efficacy in maintaining the remission of UC. However, the exact mechanisms underlying the beneficial effects of B. infantis on UC progression have yet to be elucidated. Herein, we provide evidence that B. infantis acts as a key predisposing factor for the maintenance of host genome stability. First, we showed that the fecal microbiota transplantation (FMT) of UC-derived feces contributes to more severely DNA damage in dextran sodium sulfate (DSS)-induced mice likely due to mucosa-associated microbiota alterations, as reflected by the rapid appearance of DNA double strand breaks (DSBs), a typical marker of genome instability. Genomic DNA damage analysis of colon tissues derived from healthy controls, patients with UC or dysplasia, and colitis associated cancer (CAC) patients, revealed an enhanced level of DSBs with aggravation in the degree of the intestinal mucosal lesions. To evaluate whether B. infantis modulates the host genome stability, we employed the DSS-induced colitis model and a TNFα-induced intestinal epithelial cell model. Following the administration of C57BL/6 mice with B. infantis via oral gavage, we found that the development of DSS-induced colitis in mice was significantly alleviated, in contrast to the colitis model group. Notably, B. infantis administration decreased DSB levels in both DSS-induced colitis and TNF-treated colonial cell model. Accordingly, our bioinformatic and functional studies demonstrated that B. infantis altered signal pathways involved in ubiquitin-mediated proteolysis, transcriptional misregulation in cancer, and the bacterial invasion of epithelial cells. Mechanistically, B. infantis upregulated anaphase-promoting complex subunit 7 (APC7), which was significantly suppressed in colitis condition, to activate the DNA repair pathway and alter the genome stability, while downregulation of APC7 abolished the efficiency of B. infantis treatment to induce a decrease in the level of DSBs in TNFα-induced colonial cells. Collectively, our results support that B. infantis orchestrates a molecular network involving in APC7 and genome stability, to control UC development at the clinical, biological, and mechanistic levels. Supplying B. infantis and targeting its associated pathway will yield valuable insight into the clinical management of UC patients.


2021 ◽  
Author(s):  
Wenfa Ng

Bacteriophage evolves to control the population of fast-growing bacterial cells, without which explosion in bacterial population may induce unimaginable harm to diverse ecosystems. But, bacteriophage also hide in bacterial genomes when nutritional and environmental circumstances are unfavourable. This involves the integration of phage genome into the host genome at appropriate genomic loci in a process known as lysogeny. This work sought to delineate the prophages present in the annotated genome of Bacillus subtilis 168, and assess their relative importance through RNA-seq expression analysis. Firstly, examination of the annotated genome of the model Gram-positive bacterium revealed five distinct prophage regions: SPBeta, prophage 6, PBSX, prophage 3 region, and prophage 1 region. All prophage regions contain host genes, which suggests that host transposase activity have swapped in host genes for phage genes in the prophage genome. Given the significant number of phage genes that have been swapped into each of the prophage genome, all prophage regions are deemed to be defective. BLAST analysis further highlighted that many of the prophages in B. subtilis are extinct given that they do not have ancestral or daughter brethren. However, RNA-seq transcriptome analysis of B. subtilis turned out an interesting paradox indicative of the important role that host transposase have in swapping in host promoters for prophage genes. Specifically, a significant number of prophage genes are highly expressed, which is implausible given that phage genes should be transcriptionally silent. The result and phenomenon further suggests the relative facile nature in which host promoters could be swapped in for phage genes, which is indicative of presence of genomic motifs in prophage genome recognizable by host transposase. Existence of such sequence motifs is thus indicative of possible co-evolution of transposase and phages where transposases were originally a part of the phage genome, which latter jumped out into the host genome to aid the swapping in of host genes into the prophage genome for augmenting prophage genetic repertoire in the face of changing environmental conditions. Overall, it is not uncommon for bacterial species to harbour multiple prophages. But, lysogeny may not be a viable option for long-term preservation of prophage genetic repertoire given that host transposase would inevitable swap in host genes at random locations in the prophage genome.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuliaxis Ramayo-Caldas ◽  
Laura M. Zingaretti ◽  
David Pérez-Pascual ◽  
Pamela A. Alexandre ◽  
Antonio Reverter ◽  
...  

Abstract Background The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. Results To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. Conclusions Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 10-10
Author(s):  
Francesco Tiezzi ◽  
Christian Maltecca

Abstract Several studies have highlighted the relevance of gut microbiome composition in shaping fat deposition in mammals. In contrast, other studies have highlighted how the host genome can control the abundance of individual species in the gut microbiota’s make-up. There is the need to incorporate the different ‘-omics’ data (host genome, gut microbiome, high-throughput phenotyping) in a model that allows to extract information beyond the simple sum of each component’s contribution. We propose a systematic approach to detect host genomic variants that control the gut microbiome, which in turn contributes to the host fat deposition, when this latter is based on multiple phenotypic measures. Using a dataset that included longitudinal records of fat deposition on 1,180 pigs, we implemented a mediation test to describe how fat deposition in swine (Sus scrofa) is affected by the host genotype and the gut microbiome. The phenotypic outcome was described both by measured and latent variables, taking advantage of structural equation modeling. We also implemented a ‘traditional’ genome-wide association analysis, testing the (total) effect of host genomic variants on the phenotype. Results for all models were validated using both bootstrapping and permutation tests. The models identified several host genomic features having microbiome-mediated effects on fat deposition. Our work demonstrates how the host genome can affect the phenotypic trait by inducing a change in gut microbiome composition that leads to a change in the phenotype. The host genomic features identified through the mediation analysis do not entirely overlap the group of features identified by traditional GWAS. Microbiome-mediated analyses can help understand the genetic determination of complex phenotypes. The host genomic features that exert a mediated effect could not be identified by traditional genome-wide association analysis. These can contribute to filling the missing heritability gap and provide further insights into the host genome – gut microbiome interplay.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009751
Author(s):  
Zehua Wang ◽  
Xiqian Ye ◽  
Yuenan Zhou ◽  
Xiaotong Wu ◽  
Rongmin Hu ◽  
...  

Some DNA viruses infect host animals usually by integrating their DNAs into the host genome. However, the mechanisms for integration remain largely unknown. Here, we find that Cotesia vestalis bracovirus (CvBV), a polydnavirus of the parasitic wasp C. vestalis (Haliday), integrates its DNA circles into host Plutella xylostella (L.) genome by two distinct strategies, conservatively and randomly, through high-throughput sequencing analysis. We confirmed that the conservatively integrating circles contain an essential “8+5” nucleotides motif which is required for integration. Then we find CvBV circles are integrated into the caterpillar’s genome in three temporal patterns, the early, mid and late stage-integration. We further identify that three CvBV-encoded integrases are responsible for some, but not all of the virus circle integrations, indeed they mainly participate in the processes of early stage-integration. Strikingly, we find two P. xylostella integrases (PxIN1 and PxIN2) are highly induced upon wasp parasitism, and PxIN1 is crucial for integration of some other early-integrated CvBV circles, such as CvBV_04, CvBV_12 and CvBV_24, while PxIN2 is important for integration of a late-integrated CvBV circle, CvBV_21. Our data uncover a novel mechanism in which CvBV integrates into the infected host genome, not only by utilizing its own integrases, but also by recruiting host enzymes. These findings will strongly deepen our understanding of how bracoviruses regulate and integrate into their hosts.


2021 ◽  
Author(s):  
Mathew Abraham ◽  
Ashley C. Beavis ◽  
Peng Xiao ◽  
Francois J Villinger ◽  
Zhuo Li ◽  
...  

H5N1, an avian influenza virus, is known to circulate in many Asian countries like Bangladesh, China, Cambodia, Indonesia, and Vietnam. The current FDA-approved H5N1 vaccine has a moderate level of efficacy. A safe and effective vaccine is needed to prevent the outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in humans. Non-segmented negative-sense single-stranded viruses (NNSVs) are widely used as a vector to develop vaccines for humans, animals, and poultry. NNSVs stably express foreign genes without integrating with the host genome. J Paramyxovirus (JPV) is a non-segmented negative-strand RNA virus and a member of the proposed genus Jeilongvirus in the family Paramyxoviridae . JPV-specific antibodies have been detected in rodents, bats, humans, and pigs, but the virus is not associated with disease in any species other than mice. JPV replicates in the respiratory tract of mice and efficiently expresses the virus-vectored foreign genes in tissue culture cells. In this work, we explored JPV as a vector for developing an H5N1 vaccine using intranasal delivery. We incorporated hemagglutinin (HA) of H5N1 into the JPV genome by replacing the small hydrophobic (SH) gene to generate a recombinant JPV expressing HA (rJPV-ΔSH-H5). A single intranasal administration of rJPV-ΔSH-H5 protected mice from a lethal HPAI H5N1 challenge. Intranasal vaccination of rJPV-ΔSH-H5 in rhesus macaques elicited antigen-specific humoral and cell-mediated immune responses. This work demonstrates that JPV is a promising vaccine vector. IMPORTANCE HPAI H5N1 outbreak in Southeast Asia destroyed millions of birds. Transmission of H5N1 into humans resulted in deaths in many countries. In this work, we developed a novel H5N1 vaccine candidate using JPV as a vector and demonstrated that JPV is an efficacious vaccine vector in animals. NNSVs stably express foreign genes without integrating into the host genome. JPV, an NNSV, replicates efficiently in the respiratory tract and induces robust immune responses.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1662
Author(s):  
Dalton Dacus ◽  
Nicholas A. Wallace

The beta genus of human papillomaviruses infects cutaneous keratinocytes. Their replication depends on actively proliferating cells and, thus, they conflict with the cellular response to the DNA damage frequently encountered by these cells. This review focus on one of these viruses (HPV8) that counters the cellular response to damaged DNA and mitotic errors by expressing a protein (HPV8 E6) that destabilizes a histone acetyltransferase, p300. The loss of p300 results in broad dysregulation of cell signaling that decreases genome stability. In addition to discussing phenotypes caused by p300 destabilization, the review contains a discussion of the extent to which E6 from other β-HPVs destabilizes p300, and provides a discussion on dissecting HPV8 E6 biology using mutants.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yiting Yang ◽  
Xidong Ye ◽  
Ranran Dai ◽  
Zhaoqiang Li ◽  
Yan Zhang ◽  
...  

AbstractEpstein-Barr virus nuclear antigen 2 (EBNA2) is a transactivator of viral and cellular gene expression, which plays a critical role in the Epstein-Barr virus-associated diseases. It was reported that EBNA2 regulates gene expression by reorganizing chromatin and manipulating epigenetics. Recent studies showed that liquid-liquid phase separation plays an essential role in epigenetic and transcriptional regulation. Here we show that EBNA2 reorganized chromatin topology to form accessible chromatin domains (ACDs) of the host genome by phase separation. The N-terminal region of EBNA2, which is necessary for phase separation, is sufficient to induce ACDs. The C-terminal domain of EBNA2 promotes the acetylation of accessible chromatin regions by recruiting histone acetylase p300 to ACDs. According to these observations, we proposed a model of EBNA2 reorganizing chromatin topology for its acetylation through phase separation to explain the mechanism of EBNA2 hijacking the host genome by controlling its epigenetics.


Sign in / Sign up

Export Citation Format

Share Document