genome integration
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tomislav Domazet-Lošo

The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis the two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on the large scale in general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge on the mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature, but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I showed that the sequence features of mRNA vaccines meet all known requirements for retroposition by L1 elements — the only active and the most abundant retrotransposons in the human genome. In contrast, I found an evolutionary bias in the set of known retrocopy generating genes — a pattern that might help in the future development of retroposition-resistant therapeutic mRNAs. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes, and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John T. Lovell ◽  
Nolan B. Bentley ◽  
Gaurab Bhattarai ◽  
Jerry W. Jenkins ◽  
Avinash Sreedasyam ◽  
...  

AbstractGenome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence–absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the ‘Pawnee’ cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence–absence and functional annotation database among genomes and within the two outbred haplotypes of the ‘Lakota’ genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Cell Reports ◽  
2021 ◽  
pp. 109530
Author(s):  
Nathan Smits ◽  
Jay Rasmussen ◽  
Gabriela O. Bodea ◽  
Alberto A. Amarilla ◽  
Patricia Gerdes ◽  
...  

Author(s):  
Nan Hao ◽  
Qinqin Chen ◽  
Ian B. Dodd ◽  
Keith E. Shearwin
Keyword(s):  
E Coli ◽  

2021 ◽  
Author(s):  
Nathan Smits ◽  
Jay Rasmussen ◽  
Gabriela O Bodea ◽  
Alberto A Amarilla ◽  
Patricia Gerdes ◽  
...  

A recent study proposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we applied deep (>50x) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2, and did not find any evidence of the virus existing as DNA. By examining ONT data from separate HEK293T cultivars, we resolved the complete sequences of 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV) positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions via ONT sequencing. That we found no evidence of SARS-CoV-2 integration suggests such events in vivo are highly unlikely to drive later oncogenesis or explain post-recovery detection of the virus.


2021 ◽  
Vol 9 (5) ◽  
pp. 891
Author(s):  
Takashi Hatano ◽  
Daisuke Sano ◽  
Hideaki Takahashi ◽  
Nobuhiko Oridate

The incidence of oropharyngeal cancer (OPC) is increasing remarkably among all head and neck cancers, mainly due to its association with the human papillomavirus (HPV). Most HPVs are eliminated by the host’s immune system; however, because HPV has developed an effective immune evasion mechanism to complete its replication cycle, a small number of HPVs are not eliminated, leading to persistent infection. Moreover, during the oncogenic process, the extrachromosomal HPV genome often becomes integrated into the host genome. Integration involves the induction and high expression of E6 and E7, leading to cell cycle activation and increased genomic instability in the host. Therefore, integration is an important event in oncogenesis, although the associated mechanism remains unclear, especially in HPV-OPC. In this review, we summarize the current knowledge on HPV-mediated carcinogenesis, with special emphasis on immune evasion and integration mechanisms, which are crucial for oncogenesis.


2021 ◽  
Vol 22 (6) ◽  
pp. 3242
Author(s):  
María Lourdes Garza-Rodríguez ◽  
Mariel Araceli Oyervides-Muñoz ◽  
Antonio Alí Pérez-Maya ◽  
Celia Nohemí Sánchez-Domínguez ◽  
Anais Berlanga-Garza ◽  
...  

Human papillomavirus (HPV) DNA integration is a crucial event in cervical carcinogenesis. However, scarce studies have focused on studying HPV integration (HPVint) in early-stage cervical lesions. Using HPV capture followed by sequencing, we investigated HPVint in pre-tumor cervical lesions. Employing a novel pipeline, we analyzed reads containing direct evidence of the integration breakpoint. We observed multiple HPV infections in most of the samples (92%) with a median integration rate of 0.06% relative to HPV mapped reads corresponding to two or more sequence breakages. Unlike cancer studies, most integrations events were unique (supported by one read), consistent with the lack of clonal selection. Congruent to other studies, we found that breakpoints could occur, practically, in any part of the viral genome. We noted that L1 had a higher frequency of rupture integration (25%). Based on host genome integration frequencies, we found previously reported integration sites in cancer for genes like FHIT, CSMD1, and LRP1B and putatively many new ones such as those exemplified in CSMD3, ROBO2, and SETD3. Similar host integrations regions and genes were observed in diverse HPV types within many genes and even equivalent integration positions in different samples and HPV types. Interestingly, we noted an enrichment of integrations in most centromeres, suggesting a possible mechanism where HPV exploits this structural machinery to facilitate integration. Supported by previous findings, overall, our analysis provides novel information and insights about HPVint.


Sign in / Sign up

Export Citation Format

Share Document