Image Segmentation and Selective Smoothing Based on Variational Framework

2008 ◽  
Vol 54 (1-3) ◽  
pp. 145-158 ◽  
Author(s):  
Bo Chen ◽  
Pong C. Yuen ◽  
Jian-Huang Lai ◽  
Wen-Sheng Chen
2016 ◽  
Vol 6 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Meng Li ◽  
Yi Zhan

AbstractA feature-dependent variational level set formulation is proposed for image segmentation. Two second order directional derivatives act as the external constraint in the level set evolution, with the directional derivative across the image features direction playing a key role in contour extraction and another only slightly contributes. To overcome the local gradient limit, we integrate the information from the maximal (in magnitude) second-order directional derivative into a common variational framework. It naturally encourages the level set function to deform (up or down) in opposite directions on either side of the image edges, and thus automatically generates object contours. An additional benefit of this proposed model is that it does not require manual initial contours, and our method can capture weak objects in noisy or intensity-inhomogeneous images. Experiments on infrared and medical images demonstrate its advantages.


2022 ◽  
Author(s):  
Afzal Rahman ◽  
Haider Ali ◽  
Noor Badshah ◽  
Muhammad Zakarya ◽  
Hameed Hussain ◽  
...  

Abstract In image segmentation and in general in image processing, noise and outliers distort contained information posing in this way a great challenge for accurate image segmentation results. To ensure a correct image segmentation in presence of noise and outliers, it is necessary to identify the outliers and isolate them during a denoising pre-processing or impose suitable constraints into a segmentation framework. In this paper, we impose suitable removing outliers constraints supported by a well-designed theory in a variational framework for accurate image segmentation. We investigate a novel approach based on the power mean function equipped with a well established theoretical base. The power mean function has the capability to distinguishes between true image pixels and outliers and, therefore, is robust against outliers. To deploy the novel image data term and to guaranteed unique segmentation results, a fuzzy-membership function is employed in the proposed energy functional. Based on qualitative and quantitative extensive analysis on various standard data sets, it has been observed that the proposed model works well in images having multi-objects with high noise and in images with intensity inhomogeneity in contrast with the latest and state of the art models.


Sign in / Sign up

Export Citation Format

Share Document