scholarly journals Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies

2018 ◽  
Vol 32 (9) ◽  
pp. 3071-3086 ◽  
Author(s):  
Dan Yan ◽  
Mingtian Yao ◽  
Fulco Ludwig ◽  
Pavel Kabat ◽  
He Qing Huang ◽  
...  
2021 ◽  
Vol 48 (5) ◽  
pp. 666-675
Author(s):  
O. N. Nasonova ◽  
Ye. M. Gusev ◽  
E. E. Kovalev ◽  
G. V. Ayzel ◽  
M. K. Chebanova

2015 ◽  
Vol 12 (7) ◽  
pp. 6755-6797 ◽  
Author(s):  
S. Zuliziana ◽  
K. Tanuma ◽  
C. Yoshimura ◽  
O. C. Saavedra

Abstract. Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.


2002 ◽  
Vol 150 (3) ◽  
pp. 255-275 ◽  
Author(s):  
Valentina Krysanova ◽  
Uwe Haberlandt

Sign in / Sign up

Export Citation Format

Share Document