Rainfall Trends over a Small Island Teleconnected to the North Atlantic Oscillation - the Case of Madeira Island, Portugal

2020 ◽  
Vol 34 (14) ◽  
pp. 4449-4467 ◽  
Author(s):  
Luis Angel Espinosa ◽  
Maria Manuela Portela
Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 86
Author(s):  
Luis Angel Espinosa ◽  
Maria Manuela Portela ◽  
João Dehon Pontes Filho ◽  
Martina Zelenakova

This paper explores practical applications of bivariate modelling via copulas of two likely dependent random variables, i.e., of the North Atlantic Oscillation (NAO) coupled with extreme rainfall on the small island of Madeira, Portugal. Madeira, due to its small size (∼740 km2), very pronounced mountain landscape, and location in the North Atlantic, experiences a wide range of rainfall regimes, or microclimates, which hamper the analyses of extreme rainfall. Previous studies showed that the influence of the North Atlantic Oscillation (NAO) on extreme rainfall is at its largest in the North Atlantic sector, with the likelihood of increased rainfall events from December through February, particularly during negative NAO phases. Thus, a copula-based approach was adopted for teleconnection, aiming at assigning return periods of daily values of an NAO index (NAOI) coupled with extreme daily rainfalls—for the period from December 1967 to February 2017—at six representative rain gauges of the island. The results show that (i) bivariate copulas describing the dependence characteristics of the underlying joint distributions may provide useful analytical expressions of the return periods of the coupled previous NAOI and extreme rainfall and (ii) that recent years show signs of increasing climate variability with more anomalous daily negative NAOI along with higher extreme rainfall events. These findings highlight the importance of multivariate modelling for teleconnections of prominent patterns of climate variability, such as the NAO, to extreme rainfall in North Atlantic regions, especially in small islands that are highly vulnerable to the effects of abrupt climate variability.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Nuno Ratola

AbstractThe atmospheric concentration of persistent organic pollutants (and of polycyclic aromatic hydrocarbons, PAHs, in particular) is closely related to climate change and climatic fluctuations, which are likely to influence contaminant’s transport pathways and transfer processes. Predicting how climate variability alters PAHs concentrations in the atmosphere still poses an exceptional challenge. In this sense, the main objective of this contribution is to assess the relationship between the North Atlantic Oscillation (NAO) index and the mean concentration of benzo[a]pyrene (BaP, the most studied PAH congener) in a domain covering Europe, with an emphasis on the effect of regional-scale processes. A numerical simulation for a present climate period of 30 years was performed using a regional chemistry transport model with a 25 km spatial resolution (horizontal), higher than those commonly applied. The results show an important seasonal behaviour, with a remarkable spatial pattern of difference between the north and the south of the domain. In winter, higher BaP ground levels are found during the NAO+ phase for the Mediterranean basin, while the spatial pattern of this feature (higher BaP levels during NAO+ phases) moves northwards in summer. These results show deviations up to and sometimes over 100% in the BaP mean concentrations, but statistically significant signals (p<0.1) of lower changes (20–40% variations in the signal) are found for the north of the domain in winter and for the south in summer.


1997 ◽  
Vol 42 (11) ◽  
pp. 927-931 ◽  
Author(s):  
Yonghong Zhou ◽  
Dawei Zheng ◽  
Benjamin Fong Chao

2014 ◽  
Vol 62 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Miriam Fendeková ◽  
Pavla Pekárová ◽  
Marián Fendek ◽  
Ján Pekár ◽  
Peter Škoda

Abstract Changes in runoff parameters are very important for Slovakia, where stream-flow discharges, being supplied by precipitation and groundwater runoff, are preferentially influenced by climatic conditions. Therefore, teleconnections between runoff parameters, climate parameters and global atmospheric drivers such as North Atlantic Oscillation, Southern Pacific Oscillation, Quasi-biennial oscillation and solar activity were studied in the Nitra River Basin, Slovakia. Research was mostly based on records of 80 years (1931-2010) for discharges and baseflow, and 34 years for groundwater heads. Methods of autocorrelation, spectral analysis, cross-correlation and coherence function were used. Results of auto- correllograms for discharges, groundwater heads and base flow values showed a very distinct 11-year and 21-year periodicity. Spectrogram analysis documented the 11-year, 7.8-year, 3.6-year and 2.4-year periods in the discharge, precipitation and air temperature time series. The same cycles except of 11-years were also identified in the long-term series of the North Atlantic Oscillation and Southern Pacific Oscillation indices. The cycle from approximately 2.3 to 2.4-years is most likely connected with Quasi-biennial oscillation. The close negative correlation between the North Atlantic Oscillation winter index and the hydrological surface and groundwater parameters can be used for their prediction within the same year and also for one year in advance.


SOLA ◽  
2017 ◽  
Vol 13 (0) ◽  
pp. 209-213 ◽  
Author(s):  
Naoaki Saito ◽  
Shuhei Maeda ◽  
Tosiyuki Nakaegawa ◽  
Yuhei Takaya ◽  
Yukiko Imada ◽  
...  

2017 ◽  
Vol 205 ◽  
pp. 855-867 ◽  
Author(s):  
Andrew N. Commin ◽  
Andrew S. French ◽  
Matteo Marasco ◽  
Jennifer Loxton ◽  
Stuart W. Gibb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document