A Novel and Simple Method for Elements Determination in Aerobiological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis

2020 ◽  
Vol 231 (2) ◽  
Author(s):  
Andrea C. Isaguirre ◽  
Mario F. Moyano ◽  
Raúl A. Gil ◽  
Marta M. Moglia
Author(s):  
Scott Wilschefski ◽  
Matthew Baxter ◽  
Gertruida Pool

Background The measurement of selenium in human plasma is useful to assess deficiency or toxicity. The presence of gadolinium in clinical samples following administration of certain contrast agents used for magnetic resonance imaging can cause a significant positive bias in selenium results when measured using quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). Methods A mathematical equation to correct for gadolinium interference was assessed using both patient samples and commercial quality control/external quality assurance (QC/EQA) materials spiked with gadolinium. Samples were analysed using an Agilent 7900 ICP-MS operated in ‘narrow peak’ (half-mass) mode. Accuracy was evaluated by comparing corrected selenium results with target concentrations. Results Corrected results were found to be accurate at all gadolinium concentrations tested (2, 4, 10 and 20 mg/L). Average recoveries ranged from 97.4 to 106.5%. Results for QC/EQA materials were within specified target ranges. Within-run imprecision was <3%, and between-run imprecision was <4.3%, demonstrating robustness. Conclusions The correction equation described here is a simple method to correct for gadolinium interference on plasma selenium measurement using ICP-MS. This approach eliminates the need for specimen recollections, and improves patient care by reducing laboratory turnaround times and preventing delays in diagnosis/treatment.


2019 ◽  
Vol 20 (3) ◽  
pp. 280-298
Author(s):  
Paul A. Morris ◽  
Alex Christ ◽  
Edward J. Mikucki

The <10, <4, <2.5 and <1 µm fractions of eight regolith samples have been extracted as aerosols, then analysed for more than 60 elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Precision and accuracy rivals that of conventional digestion and ICP-MS analysis for most elements, but the aerosol extraction and ablation approach can be completed within 30 min, avoids compromising the sample by screening, column settling, fusion and/or digestion, and includes data for elements such as Br, Cl, I and Se that are conventionally analysed by individual procedures. Major element chemistry and scanning electron microscope (SEM) imagery show that the aerosol fractions of regolith are dominated by kaolinite, with quartz in aeolian regolith. The aerosol fractions of Si- and Ca-rich regolith have higher trace element concentrations than the coarser fraction (0.45–2 mm), but chalcophile elements are depleted in the aerosols of Fe-rich regolith relative to the coarser fraction. Improvements in in-field analytical technology coupled with aerosol extraction mean that fine and ultrafine fraction chemistry can be used to guide mineral exploration programmes in close to real time.Supplementary material: The results of the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of filter papers are available at https://doi.org/10.6084/m9.figshare.c.4562807


2015 ◽  
Vol 30 (2) ◽  
pp. 327-338 ◽  
Author(s):  
Natalia Miliszkiewicz ◽  
Stanisław Walas ◽  
Anna Tobiasz

For solid sample quantitative analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) the main analytical problems are adequate standards preparation and signals standardization.


2016 ◽  
Vol 31 (2) ◽  
pp. 537-542 ◽  
Author(s):  
Jefferson S. de Gois ◽  
Marta Costas-Rodríguez ◽  
Paul Vallelonga ◽  
Daniel L. G. Borges ◽  
Frank Vanhaecke

Despite the occurrence of spectral interference, memory effects and the characteristic low sensitivity, isotopic analysis of Cl in seawater can be successfully performed using PN-MC-ICP-MS.


2014 ◽  
Vol 29 (10) ◽  
pp. 1835-1843 ◽  
Author(s):  
Ming Tang ◽  
William F. McDonough ◽  
Ricardo Arevalo

Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements.


2001 ◽  
Vol 3 (3-4) ◽  
pp. 215-230
Author(s):  
Wouter HEIJLEN ◽  
Philippe MUCHEZ

During the last decade, the possible application of laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS) as a quantitative technique for the analysis of individual fluid inclusions has been intensely studied. The quantitative ability of this technique is, however, complicated by several fractionation processes that operate during ablation, transport and analysis in the ICP-MS. In the present study, a number of these fractionation effects were studied and the quantitative ability of LA-ICP-MS analysis of fluid inclusions in natural quartz is evaluated. Using NIST SRM 612 and 614 as reference materials, it is shown that the fractionation during transport is minimised when the sample cell is flushed with He, in contrast with the set-up where Ar is used. Calcium has been successfully applied as an internal standard to calibrate the REE in NIST-glasses. The use of Ca to calibrate other lithophile and chalcophile elements, such as K, Zn, Cu and Pb, can however be questioned. It is shown that the technique is capable of semi-quantitatively characterising different fluid inclusion populations in natural quartz, which demonstrates its importance as a tool for palaeofluidflow modelling. However, during LA-ICP-MS analysis of fluid inclusions in natural quartz, elements are reprecipitated in a glassy phase, as shown by SEM-EDX analysis of the sample surface after ablation. This process could result in a fractionation and may account for the poor precision of the analysis.


Sign in / Sign up

Export Citation Format

Share Document