scholarly journals The individual analysis of fluid inclusions in minerals using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS): an evaluation

2001 ◽  
Vol 3 (3-4) ◽  
pp. 215-230
Author(s):  
Wouter HEIJLEN ◽  
Philippe MUCHEZ

During the last decade, the possible application of laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS) as a quantitative technique for the analysis of individual fluid inclusions has been intensely studied. The quantitative ability of this technique is, however, complicated by several fractionation processes that operate during ablation, transport and analysis in the ICP-MS. In the present study, a number of these fractionation effects were studied and the quantitative ability of LA-ICP-MS analysis of fluid inclusions in natural quartz is evaluated. Using NIST SRM 612 and 614 as reference materials, it is shown that the fractionation during transport is minimised when the sample cell is flushed with He, in contrast with the set-up where Ar is used. Calcium has been successfully applied as an internal standard to calibrate the REE in NIST-glasses. The use of Ca to calibrate other lithophile and chalcophile elements, such as K, Zn, Cu and Pb, can however be questioned. It is shown that the technique is capable of semi-quantitatively characterising different fluid inclusion populations in natural quartz, which demonstrates its importance as a tool for palaeofluidflow modelling. However, during LA-ICP-MS analysis of fluid inclusions in natural quartz, elements are reprecipitated in a glassy phase, as shown by SEM-EDX analysis of the sample surface after ablation. This process could result in a fractionation and may account for the poor precision of the analysis.

2019 ◽  
Vol 20 (3) ◽  
pp. 280-298
Author(s):  
Paul A. Morris ◽  
Alex Christ ◽  
Edward J. Mikucki

The <10, <4, <2.5 and <1 µm fractions of eight regolith samples have been extracted as aerosols, then analysed for more than 60 elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Precision and accuracy rivals that of conventional digestion and ICP-MS analysis for most elements, but the aerosol extraction and ablation approach can be completed within 30 min, avoids compromising the sample by screening, column settling, fusion and/or digestion, and includes data for elements such as Br, Cl, I and Se that are conventionally analysed by individual procedures. Major element chemistry and scanning electron microscope (SEM) imagery show that the aerosol fractions of regolith are dominated by kaolinite, with quartz in aeolian regolith. The aerosol fractions of Si- and Ca-rich regolith have higher trace element concentrations than the coarser fraction (0.45–2 mm), but chalcophile elements are depleted in the aerosols of Fe-rich regolith relative to the coarser fraction. Improvements in in-field analytical technology coupled with aerosol extraction mean that fine and ultrafine fraction chemistry can be used to guide mineral exploration programmes in close to real time.Supplementary material: The results of the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of filter papers are available at https://doi.org/10.6084/m9.figshare.c.4562807


2021 ◽  
Vol 33 (3) ◽  
pp. 305-314
Author(s):  
Anastassia Y. Borisova ◽  
Stefano Salvi ◽  
German Velasquez ◽  
Guillaume Estrade ◽  
Aurelia Colin ◽  
...  

Abstract. Recent advances in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) open new perspectives for quantification of trace metals and metalloids in mineral-hosted fluid inclusions and glass-hosted gas bubbles. This work is devoted to a new method applied to quantify element concentrations (at parts-per-million and weight percent levels) in natural and synthetic fluid inclusions and gas bubbles by using only an external calibrator in cases where internal standardization is unavailable. For example, this method can be applied to calculate element (metal and metalloid) concentrations in carbonic (C–O–H) fluid inclusions and bubbles. The method is devoted to measuring incompatible (with the host mineral and glass) trace elements originally dissolved into the trapped fluid. The method requires precise estimation of the fluid density, the inclusion/bubble volume or average radius, and measurement of the laser ablation crater radius by independent microanalytical techniques as well as accurate data on the concentration of major/minor elements compatible with the host mineral (or host glass). This method, applicable for analyses of hydrous carbonic fluid inclusions and gas bubbles hosted in silicate minerals and glasses, relies on the absence of a matrix effect between fluid, host mineral and daughter phases (silicate, oxide or sulfide) and the external calibrator (e.g., reference silicate glasses) during the LA-ICP-MS analysis, an assumption validated by the use of femtosecond lasers.


2015 ◽  
Vol 30 (2) ◽  
pp. 327-338 ◽  
Author(s):  
Natalia Miliszkiewicz ◽  
Stanisław Walas ◽  
Anna Tobiasz

For solid sample quantitative analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) the main analytical problems are adequate standards preparation and signals standardization.


2016 ◽  
Vol 31 (4) ◽  
pp. 1030-1033 ◽  
Author(s):  
J. S. Hamilton ◽  
E. L. Gorishek ◽  
P. M. Mach ◽  
D. Sturtevant ◽  
M. L. Ladage ◽  
...  

A new single Peltier element ablation cell is described and its applicability to biological sampling discussed to evaluate its performance.


2017 ◽  
Vol 32 (8) ◽  
pp. 1500-1507 ◽  
Author(s):  
Jorge Moreda-Piñeiro ◽  
Alicia Cantarero-Roldán ◽  
Antonio Moreda-Piñeiro ◽  
José Ángel Cocho ◽  
Pilar Bermejo-Barrera

An approach by laser ablation (LA) coupled with inductively coupled mass spectrometry (ICP-MS) for multi-element determination in whole blood is described.


Sign in / Sign up

Export Citation Format

Share Document