Geologica Belgica
Latest Publications


TOTAL DOCUMENTS

150
(FIVE YEARS 49)

H-INDEX

10
(FIVE YEARS 4)

Published By Geologicva Belgica

2034-1954, 1374-8505

2022 ◽  
Vol 25 (1-2) ◽  
pp. 1-15
Author(s):  
Yves CANDELA ◽  
Bernard MOTTEQUIN
Keyword(s):  

Lower Ordovician linguliformean brachiopods from the Stavelot–Venn Massif (Belgium and Germany) are described systematically for the first time. The material comprises specimens from the Jalhay (Solwaster Member) and Ottré (Les Plattes Member) formations of Tremadocian and Floian ages, respectively. The Solwaster Member yielded a relatively diverse assemblage of nine species of lingulide (e.g. Lingulella lata, Lithobolus sp., Broeggeria sp.) and acrotretide (Acrotreta? sp.) whereas only one siphonotretide species (Celdobolus sp.) is recognised from the base of the Les Plattes Member where it is associated with conodonts of the Paroistodus proteus Zone. The assemblage from the Solwaster Member, although not abundant, is much more diverse than that of the contemporaneous Chevlipont Formation in the Brabant Massif (Thyle Valley, Belgium). Some of the taxa identified in the Stavelot–Venn Massif represent some of the youngest occurrences and first occurrences documented in Avalonia.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 167-177
Author(s):  
Yves QUINIF ◽  
Marc LEGROS

The Lorette Cave contains a wide variety of deposits within various stratigraphical contexts. This cave is a part of the complex underground meander cut-off of the Wamme and Lomme rivers, between some swallow-holes along their two talwegs near On, Jemelle and Rochefort, and the general resurgence at Eprave. The Lorette Cave is embedded within the Givetian limestone formations of the Calestienne. This cave displays the first part with a labyrinthic structure. Some parts of the cave galleries are affected by recent tectonic activity, which dislocates some galleries and provokes collapses. The second part of the cave comprises the West Gallery, which contains the most complete sedimentary series. The “gours suspendus” (hanging gours) section is located at the western end of the gallery. The cave contains numerous and rich detrital deposits. The oldest sedimentary unit is a diamictite found in several galleries (e.g. Galerie Fontaine-Bagdad, Salle du Cataclysme). It is composed of large decametric-sized quartz and sandstone pebbles coming from the erosion of the Lower Devonian formations of the Ardenne. This deposit is older than the U/Th dating limit, i.e. 350 ka. The West Gallery exposes an area of collapsed blocks and ends in a vast room. This gallery is filled with a thick fluvial series of upper Pleistocene age and capped by speleothems of Tardiglacial to Holocene age. The large terminal chamber is clogged by flooded pits. A tributary gallery shows a sedimentary series in a subsiding pit, the “Fosse aux Lions” (Lions’ Pit). These deposits are interstratified diamictite interbedded between two fluvial units, the upper part of which displays oblique stratifications. The dating of a summit stalagmite places this set at 120 ka. The present paper analyses a section made in the southern flank of the terminal room, close to the junction with the West Gallery: the “gours suspendus” section. A large part of this section consists of a complex fluvial deposit disconformably resting on top of a compact lower clay formation. This fluvial deposit is stratified, comprising mostly diamictites interstratified with thin levels of gravel and clay. It is capped by an upper clay unit and sealed by a flowstone. Thin strata of finer-grained size sediments (coarse sand), as well as clay lenses, occur within the lower clay. The diamictites indicate a torrential origin of the sediment. At the base, just above the lower clay, some sandy channelling strata testify that one or several fluvial deposition episodes occurred. Then, torrential and probably very short-living events are separated by decantation phases. The pebbles and smaller particles are made of quartz, sandstone and muscovite that most probably originated in the Lower Devonian formations. The “gours suspendus” section provides a new illustration of the succession of sedimentation and erosion phases in Belgian caves. It is now well demonstrated that speleothems grow mainly during temperate to hot and humid climatic phases and detrital infills are deposited in caves during cold/glacial phases. The physical erosion of sediments with ravine formations should be placed in the climatic history of the region. A gullying by a coarse detrital formation like that of the new section is due to a powerful heavy loaded current. The deposits within caves were therefore available, which can only occur during a cold phase due to the absence of continuous vegetation cover. The sand and clay levels interstratified between levels of pebbles indicate nevertheless distinguished flow regimes. However, this torrential lava in the new section seems different from the old diamictite. The deposition of the sedimentary units in the West Gallery seemingly happened during a glacial–interglacial transition. This sedimentological study sets a future perspective for dating flowstones and stalagmites at the top of or embedded within the deposit levels in order to propose a more robust chronological frame for the evolution dynamics of the cave infilling of the Lorette Cave in relation to the climatic history of the region.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 159-167
Author(s):  
Jef DECKERS ◽  
Jasper VERHAEGEN ◽  
Ilse VERGAUWEN

The sandy Zandvliet Member represents a particular, decalcified facies in the top of the Pliocene Lillo Formation in northern Belgium. Based on the correlation with nearby boreholes at the type locality of the Zandvliet Member, we were able to characterize this unit on Cone Penetration Tests. Compared to the underlying Merksem Member, the Zandvliet Member generally shows markedly lower cone resistance values. Since besides the decalcification, the Zandvliet Member is lithologically nearly identical to the underlying Merksem Member, the lower cone resistance values in the Zandvliet Member compared to the Merksem Member can only be the result of the decalcification of the Zandvliet Member. Indeed, the partly decalcified top of the Merksem Member also gives similar cone resistance values as the Zandvliet Member. Decalcification of the Eocene Brussel Sand in central Belgium is also known to have resulted in lower cone resistance values. Our Cone Penetration Test interpretations show that the thickness of the Zandvliet Member strongly varies across short distances (>10 m across 1 km). As the Zandvliet Member thickens, the underlying Merksem Member thins and vice versa. This trend is not in line with that of the under- and overlying strata, i.e. intraformational, nor with the depositional environment of these units. The thickness changes of the Zandvliet Member therefore purely reflect changes in depth of the post-depositional decalcification into the original shell-bearing sand (i.e. original Merksem Member). This confirms the existing hypothesis that the Zandvliet Member actually represents the decalcified part of the Merksem Member. The anomalous heavy mineralogy of the Zandvliet Member compared to the other members of the Lillo Formation cannot be readily explained by the acid chemical weathering which caused the decalcification. This may rather be related to a change in the primary heavy mineral signal of the upper part of the Merksem Member and equivalent Zandvliet Member compared to the underlying sequences of the Lillo Formation. The reason for the post-depositional decalcification could be similar to the Pleistocene changes in soil acidity invoked for decalcification of time-equivalent Red Crag sand in England.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 137-157
Author(s):  
Alain HERBOSCH

The Caledonian basement crops out in the middle and southern part of Belgium in two major tectonic units: the Brabant Massif in the Brabant Parautochthon and the Stavelot-Venn, Rocroi, Givonne and Serpont inliers in the Ardenne Allochthon. The main aim of this work is to achieve a chronostratigraphic correlation between the Brabant Massif and the Ardenne inliers, from the lower Cambrian to the Middle Ordovician. Throughout his career, Michel Vanguestaine established an informal acritarch biozonation for this basement, which is only linked to the international stratigraphic scale in vigour at that time. Our first step was to correlate these informal biozones with the trilobite (Cambrian) and graptolite (Ordovician) biozonations which are currently well correlated with the chronostratigraphy. Then, compilation of the literature concerning each of these sedimentary units makes it possible to assign a chronostratigraphic position to their constituent formations. This work has permitted the establishment of a complete chart of the stratigraphic correlations between the Brabant Massif and the three main Ardenne inliers (Stavelot-Venn, Rocroi and Givonne). Geological implications are discussed: the Brabant Massif and the Ardenne inliers formed a single sedimentation basin with different and rheologically contrasting basements (rift and shoulder). New arguments confirm the presence of a Caledonian orogeny in the Ardenne.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 125-136
Author(s):  
Jean-Marc BAELE ◽  
Hassan BOUZAHZAH ◽  
Séverine PAPIER ◽  
Sophie DECRÉE ◽  
Sophie VERHEYDEN ◽  
...  

Laser-Induced Breakdown Spectroscopy (LIBS) is a fast in-situ analytical technique based on spectroscopic analysis of atomic emission in laser-induced plasmas. Geochemical mapping at macroscopic scale using LIBS was applied to a decimetric Zn-Pb ore sample from east Belgium, which consists of alternating sphalerite and galena bands. A range of elements was detected with no or minimal spectral correction, including elements of interest for beneficiation such as Ge, Ag and Ga (although the detection of gallium could not be confirmed), and remediation, especially As and Tl. The comparison between LIBS and Energy Dispersive Spectroscopy (EDS) analyses showed that LIBS intensities reliably relate to elemental concentration although differences in spot size and detection limits exist between both techniques. The elemental images of minor and trace elements (Fe, Cu, Ag, Cd, Sb, As, Tl, Ge, Ni and Ba) obtained with LIBS revealed with great detail the compositional heterogeneity of the ore, including growth zones that were not visible on the specimen. In addition, each mineral generation has a distinct trace-element composition, reflecting a geochemical sequence whose potential metallogenic significance at the district scale should be addressed in further work. Although qualitative and preliminary, the obtained LIBS dataset already produced a wealth of information that allowed to initiate discussion on some genetical and crystallochemical aspects. Above all, LIBS appears as a powerful tool for screening geochemically large samples for the selection of zones of particular interest for further analysis.


2021 ◽  
Vol 24 (3-4) ◽  
pp. 109-124
Author(s):  
Martin DEPRET ◽  
Yannick BRUNI ◽  
Alain DASSARGUES ◽  
Agathe DEFOURNY ◽  
Jean-Marc MARION ◽  
...  

Numerous naturally CO2-rich mineral water springs, locally called pouhons, occur in the Stavelot-Venn Massif. These water springs show a particular composition with a high content of iron, manganese and lithium, and are characterised by a red-orange colour resulting from iron hydroxide precipitation near the land surface. Radon measurements have shown that these ferruginous deposits are weakly radioactive. The Upper Cambrian black shales of the La Gleize Formation are also known to display radioactive anomalies. These rocks show enrichment in HFSE (Pb, U, Y, Ce, Zr, Ti, Nb) and are depleted in transition metals (Co, Ni, Cu, Zn). Specific minerals such as florencite-(Ce), monazite-(Ce), xenotime-(Y) and zircon have been identified and are probably at the origin of the radioactive anomalies. Uranium was gradually leached from these minerals, transported in solution, and finally concentrated in ferruginous muds. These muds are mainly composed of goethite (most often amorphous), residual quartz and calcite in some samples. The most probable hypothesis is that uranium is adsorbed in small concentrations on the goethite surface. On the other hand, the Ottré Formation (Ordovician) appears to be the main source of lithium, iron and manganese. Pouhon waters have therefore probably leached rocks of various mineralogy and chemical composition during their sub-surface circulation.


2021 ◽  
Vol 24 (1-2) ◽  
pp. 85-104
Author(s):  
Meriem L. MOULANA ◽  
Aurélia HUBERT-FERRARI ◽  
Mostefa GUENDOUZ ◽  
Meriam EL OUAHABI ◽  
Abdelhak BOUTALEB ◽  
...  

The Messinian (Upper Miocene) is characterized at the level of its marginal basins by the development of numerous carbonate platforms. This study concerns the Messinian platform of the Boukadir region in the south of the Chelif Basin in Algeria. It is composed of a lower prograding rimmed platform and an upper aggradational homoclinal ramp resting upon the Tortonian–Lower Messinian Blue Marl Formation, and its thickness reaches ~280 m in the Chelif Basin. The upper red-algae unit is uniform and subhorizontal with a minimum thickness of 90 m. Petrographic analysis of the upper ramp reveals three different microfacies, characterized by Lithothamnium, foraminifera, high porosity, and a microsparitic matrix. MF1 is a packstone, MF2 a packstone/bindstone deposited above the fair-weather wave base and MF3 is a wackestone to packstone deposited below this level. The upper unit is made up entirely of autochthonous biogenic elements without significant external fluvial contribution. It was formed in a shallow marine environment, with very high productivity and a significant export of the sediments produced. This aggradation was followed by a rapid exhumation (regression) transforming all the aragonite into calcite. The platforms correspond to the T2 complex reef formation (6.7–5.95 Ma) documented on the other Messinian carbonate platforms in the South of the Alboran Sea that formed just before the Messinian Salinity Crisis.


2021 ◽  
Vol 24 (1-2) ◽  
pp. 69
Author(s):  
Maurice STREEL ◽  
Frédéric BOULVAIN ◽  
Michiel DUSAR ◽  
Stanislas LOBOZIAK ◽  
Philippe STEEMANS

Accurate palyno-analysis by S. Loboziak (from 1980 to 1983) of 28 samples from the Upper Givetian to the Middle Frasnian Blacourt, Beaulieu and Ferques Formations and of 44 samples of the Upper Frasnian to the Lower Famennian Hydrequent Formation are re-evaluated. Chelinospora concinna, Verrucosisporites bulliferus, Cirratriradites jekhowskyi, Lophozonotriletes media first occurrences are major criteria for Lower and Middle Frasnian, well calibrated by conodonts. Cymbosporites acanthaceus, Rugospora bricei, Grandispora gracilis, Diducites plicabilis, Corbulispora vimineus first occurrences allow to subdivide the Upper Frasnian where conodonts are poorly present. Samarisporites triangulatus versus Auroraspora pseudocrista taxonomy and stratigraphic significance are discussed. The reconnaissance borehole Nieuwkerke-De Seule (95W152), near the limit of the Upper Palaeozoic subcrop on the Brabant Massif (West Flanders, Belgium, 75 km east of the Boulonnais), which has intersected conodont-dated Givetian/Frasnian boundary at the transition between the Bois de Bordeaux and Bovesse Formations, contained poorly preserved miospores attributed to the triangulatus–concinna (TCo) Oppel Zones. In the nearby Nieuwkerke-Noordhoek borehole (95W153), strata also assigned to the Bovesse Formation yielded better preserved miospores which demonstrate a close succession of triangulatus–concinna (TCo) and bulliferus–jekhowskyi (BJ) Oppel Zones at the transition Lower–Middle Frasnian, also known in the Beaulieu Formation in the Boulonnais. Samples from the Heuvelland groundwater monitoring well (95W175), 10 km north of Nieuwkerke, contain the bricei-acanthaceus (BA) Oppel Zone suggesting a late Frasnian age, also known in the Hydrequent Formation in the Boulonnais area and in the Booischot Formation in the Booischot borehole (59E146) from the Campine Basin (Belgium). International correlation using Frasnian miospore zonation is attempted between the Pripyat Depression in Belarus, the Timan–Pechora province in Russia and North-West China.


2021 ◽  
Vol 24 (1-2) ◽  
Author(s):  
Bernard MOTTEQUIN

Although the Centre Grégoire Fournier of the Maredsous Abbey is especially famous for the fossils and minerals from the Carboniferous (Viséan) ‘black marble’ of Denée, a marine conservation-Lagerstätte, its palaeontological collections likewise include some types and illustrated specimens of invertebrates (cystoids, goniatites, ostracods, trilobites) and fishes from the Ordovician, Devonian and Carboniferous of Belgium. These specimens are discussed and/or illustrated as is the case of the fragments of two Belgian meteorites (Lesves and Tourinnes-la-Grosse chondrites) that are part of the CGF mineralogical and petrological collections. Moreover, the type material of 30 species and subspecies of Upper Devonian–Pennsylvanian linguliformean and rhynchonelliformean brachiopods (described by de Koninck (1847), J. Fraipont (1888a), Ch. Fraipont (1908), Demanet (1923, 1934), Demanet (in Demanet & Van Straelen, 1938), and Grimm (1998)) and that of two Middle–Upper Devonian species of trilobites (Stainier, 1887; Richter & Richter, 1933), almost all from the Namur–Dinant Basin (southern Belgium), are re-investigated and/or fully figured for the first time in order to facilitate future taxonomic revision. The obscure Tournaisian genus Anomianella de Ryckholt (1851) is rejected from the bivalves and transferred to the brachiopods (Craniida). It is probably related to Petrocrania Raymond, 1911. The lectotype (hereby selected) of Orthis latissima M‘Coy, 1844 and that of Producta corrugata M‘Coy, 1844, both from the Viséan of Ireland, are photographically illustrated (for the first time for the former). The lectotype of Productus murchisonianus de Koninck, 1847 from the Upper Palaeozoic of Tasmania (Australia) is also designated.


2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Noël VANDENBERGHE ◽  
Stephen LOUWYE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document