Assessment of Heavy Metal Contamination of the Environment in the Mining Site of Ouixane (North East Morocco)

2021 ◽  
Vol 232 (10) ◽  
Author(s):  
Azzeddine Khafouri ◽  
El Hassan Talbi ◽  
Abdesselam Abdelouas
2021 ◽  
Vol 25 (4) ◽  
pp. 609-613
Author(s):  
S.O. Agbo ◽  
M.A. Mustapha ◽  
C.E. Ogaugwu ◽  
O.G. Sodipe ◽  
E.C. Chukwu ◽  
...  

Excavation and processing of mineral deposits are valuable revenue sources yet they contribute serious environmental problems worldwide. Mining activities are widespread and contribute to heavy metal contamination in rural communities in Ekiti State, Nigeria. Available research failed to establish how mining soil may impact on resident terrestrial organisms. This study assessed the health of soil from active mining site by testing it on earthworms (Eisenia fetida) for 10 weeks. Survival, mobility, morphology and behaviour of worms were assessed while soil was analyzed for selected heavy metals by atomic absorption spectrometry. Worm survival was evident as the proportion of reference soil increased in exposure mixture and improved until 92% in the control. Worms curled up at the bottom of test vessels with varying proportions of mining site soil and appeared discolored and dehydrated when taken out of test soil, with characteristic sluggishness, particularly as the proportion of mining soil increased in exposure mixtures. Though metal levels were within permissible limits, morphology of exposed worms were visibly impacted, which corresponds in severity with increasing proportion of mining soil. On the contrary, worms tested in 100% reference soil appeared healthy and active in upper part of exposure vessels. These results suggest that the tested mining soil had adverse impacts on mobility, morphology, behavior and survival of exposed organisms when compared with the control population. Therefore, food products grown downstream of the mining site may be at risk of heavy metal contamination with consequences on food quality, water quality and food chain.


2009 ◽  
Vol 8 (6) ◽  
pp. 1541-1551
Author(s):  
Corneliu Horaicu ◽  
Florea Cornel Gabrian ◽  
Irina Grozavu ◽  
Catalin Constantin Calu ◽  
Monica Horaicu ◽  
...  

1993 ◽  
Vol 27 (7-8) ◽  
pp. 263-269 ◽  
Author(s):  
B. Iosefzon-Kuyavskaya ◽  
N. Myrlyan ◽  
A. Shames

Electron Spin Resonance (ESR) was used for the examination oi dust samples collected from snow in an urban area. On the main doublet ESR line attributed to the signal of paramagnetic metals, a singlet line characteristic for stable free radical centers (FRC) was observed. A negative correlation of significant level between FRC signal intensity and heavy metal (HM) content was established. It was shown that FRC line intensity of dust may be used as a surrogate parameter for the estimation of air pollution by HM.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document