heavy metal contamination
Recently Published Documents


TOTAL DOCUMENTS

2049
(FIVE YEARS 714)

H-INDEX

86
(FIVE YEARS 14)

2023 ◽  
Vol 83 ◽  
Author(s):  
Kalsoom ◽  
Afshan Batool ◽  
Ghufranud Din ◽  
Salah Ud Din ◽  
Johar Jamil ◽  
...  

Abstract Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52ʹ46.0ʺN 66˚59ʹ25.7ʺE and 24˚48ʹ37.5ʺN 67˚06ʹ52.6ʺE). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


2022 ◽  
Vol 3 ◽  
Author(s):  
Tim Jesper Suhrhoff

Enhanced weathering is a promising approach to remove carbon dioxide from the atmosphere. However, it may also pose environmental risks through the release of heavy metals, in particular nickel and chromium. In this perspective article I explore the potential role of plants in modulating these heavy metal fluxes. Agricultural basaltic soils may be valuable study sites in this context. However, the effect of biomass harvesting on the accumulation of heavy metals is currently not well studied. Mostly caused by different parent rock concentrations, there is a large variability of heavy metal concentrations in basaltic and ultramafic soils. Hence, to minimize environmental risks of enhanced weathering, basalts with low heavy metal concentrations should be favored. Existing phytoremediation strategies may be used to “phytoprevent” the accumulation of nickel and chromium released from enhanced weathering in soils. As a result, elevated nickel and chromium concentrations in rocks must not preclude enhanced weathering in all settings. In particular, hyperaccumulating plants could be used as part of a crop rotation to periodically remove heavy metals from soils. Enhanced weathering could also be employed on fields or forests of (non-hyper) accumulating plants that have a high primary production of biomass. Both approaches may have additional synergies with phytomining or bioenergy carbon capture and storage, increasing the total amount of carbon dioxide drawdown and at the same time preventing heavy metal accumulation in soils.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Garima Awasthi ◽  
Varad Nagar ◽  
Saglara Mandzhieva ◽  
Tatiana Minkina ◽  
Mahipal Singh Sankhla ◽  
...  

The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.


Author(s):  
Nur Syahirah Zulkafflee ◽  
Nurul Adillah Mohd Redzuan ◽  
Sara Nematbakhsh ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
...  

Paddy plants tend to accumulate heavy metals from both natural and anthropogenic sources, and this poses adverse risks to human health. The objective of this study was to investigate heavy metal contamination in paddy plants in Kelantan, Malaysia, and its health risk assessment. The bioaccumulation of heavy metals was studied by means of enrichment (EF) and translocation factors (TF). The health risk assessment was performed based on USEPA guidelines. The EF for heavy metals in the studied areas was in the descending order of Cu > As > Cr > Cd > Pb. Meanwhile, Cr and Pb exhibited higher TF values from stem to grain compared with the others. The combined hazard index (HI) resulting from five heavy metals exceeded the acceptable limit (HI >1). The lifetime cancer risk, in both adult and children, was beyond the acceptable limit (10−4) and mainly resulted from exposure. The total cancer risk (CRt) due to simultaneous exposures to multiple carcinogenic elements also exceeded 10−4. In conclusion, intake of heavy metal through rice ingestion is likely to cause both non-carcinogenic and carcinogenic health risks. Further research is required to investigate the extent of heavy metal contamination in agricultural soils and, moreover, to establish human exposure as a result of rice consumption.


Author(s):  
Agatha Anak Sibuar ◽  
Nur Syahirah Zulkafflee ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
Soo Yee Lee ◽  
...  

Rice is one of the major crops as well as the staple food in Malaysia. However, historical mining activity has raised a concern regarding heavy metal contamination in paddy plants, especially in Perak, a state with major tin mining during the late nineteenth century. Therefore, the objective of this study is to investigate the heavy metals (As, Cd, Pb, Cu, Cr) contamination in paddy soils and paddy plants in three districts in Perak. The content of heavy metals was determined using ICP-MS, while the absorption and transferability of heavy metals in the paddy plants were investigated through enrichment (EF) and translocation (TF) factors. Principal component analysis (PCA) was employed to recognize the pattern of heavy metal contaminations in different sampling areas. Health risk assessment was performed through calculation of various indices. The quantification results showed that root contained highest concentration of the studied heavy metals, with As exhibiting the highest concentration. The EF results revealed the accumulation of As, Cu, and Cr in the rice grains while PCA showed the different compositional pattern in the different sampling areas. The health risk assessment disclosed both noncarcinogenic and carcinogenic risks in the local adults and children. Overall, findings from this study show that heavy metal contamination poses potential health risks to the residents and control measure is required.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
María Custodio ◽  
Ciro Espinoza ◽  
Richard Peñaloza ◽  
Tessy Peralta-Ortiz ◽  
Héctor Sánchez-Suárez ◽  
...  

AbstractThe cumulative effects of anthropogenic stress on freshwater ecosystems are becoming increasingly evident and worrisome. In lake sediments contaminated by heavy metals, the composition and structure of microbial communities can change and affect nutrient transformation and biogeochemical cycling of sediments. In this study, bacterial and archaeal communities of lake sediments under fish pressure contaminated with heavy metals were investigated by the Illumina MiSeq platform. Despite the similar content of most of the heavy metals in the lagoon sediments, we found that their microbial communities were different in diversity and composition. This difference would be determined by the resilience or tolerance of the microbial communities to the heavy metal enrichment gradient. Thirty-two different phyla and 66 different microbial classes were identified in sediment from the three lagoons studied. The highest percentages of contribution in the differentiation of microbial communities were presented by the classes Alphaproteobacteria (19.08%), Cyanophyceae (14.96%), Betaproteobacteria (9.01%) y Actinobacteria (7.55%). The bacteria that predominated in sediments with high levels of Cd and As were Deltaproteobacteria, Actinobacteria, Coriobacteriia, Nitrososphaeria and Acidobacteria (Pomacocha), Alphaproteobacteria, Chitinophagia, Nitrospira and Clostridia (Tipicocha) and Betaproteobacteria (Tranca Grande). Finally, the results allow us to expand the current knowledge of microbial diversity in lake sediments contaminated with heavy metals and to identify bioindicators taxa of environmental quality that can be used in the monitoring and control of heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document