water level fluctuation zone
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 4)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3465
Author(s):  
Yuhai Bao ◽  
Yantong Yu ◽  
Qiang Tang ◽  
Xiubin He ◽  
Jie Wei ◽  
...  

During the exposed season, the water level fluctuation zone of the Three Gorges Reservoir has suffered from hillslope-concentrated flows and riverine stream waves, which considerably complicates the processes and magnifies the rate of bank erosion. This study depicts the forms and patterns of integrated bank erosion in this reservoir marginal landscape, decouples the evolutionary processes involved, explores the underlying mechanisms, and quantifies the magnitude through a case study on a fine-grained sandy bank. Hillslope-concentrated flows over rainfall storm events developed continuous gullies starting from uplands and extending throughout the entire slope of the reservoir bank, characterized by relatively larger depths and widths compared with discontinuous gullies on the lower slope developed by riverine stream waves.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaojuan Zhang ◽  
Yutao Zhang

With the aim of revealing the potential ecological risk and distribution characteristics of heavy metals on the surface sediment at the Shawan River section of Yelang Lake, the following three analyses were first performed: (1) analysis of grain-size composition on sediment samples collected at seven different sites in the water-level-fluctuation zone (WLFZ); (2) analysis of bulk sediment content of six heavy metals, namely, Cd, Cr, Pb, Mn, Zn, and Cu; and (3) the correlation analysis of grain-size composition and heavy metal content in the sediment. Afterwards, the approach of Hakanson potential ecological risk index was employed to analyze the risk of heavy metal pollution in sediments of seven WLFZ plots. The outcomes indicate that (1) the mean sediment grain size at each sampling site was generally >0.063 mm, with gravel grains (>1 mm) and sand grains (0.22–1 mm) accounting for the largest proportions; (2) the site-averaged mean sediment content of each of the six heavy metals was significantly higher than their respective geochemical background contents in the sediment of Guizhou Province, and the grain-size dependence of the bulk sediment content of heavy metals was not significant; (3) the distribution of Cr was relatively independent of other metals, which was in contrast to notable positive correlations observed between other metals; and (4) in accordance with the approach of Hakanson potential ecological risk index, for these heavy metals, their potential ecological risk reduced by the order of Zn < Cr < Cu < Pb < Cd, with Cd having a mean potential risk index (Ei) of 566.13, suggestive of a very high level of potential ecological risk, Zn, Cr, and Cu having a mild potential ecological risk, and Pb having moderate potential ecological risk. Cd largely contributes to the comprehensive ecological risk index RI is the largest, thereby having important environmental implications.


Author(s):  
Ping Guo ◽  
Hai Xiao ◽  
Feng Gao ◽  
Zijuan Li ◽  
Huan Hu ◽  
...  

Submersion and exposure from the operation of the Three Gorges Reservoir (TGR) can alter soil properties and plant characteristics at different elevations of the water level fluctuation zone (WLFZ), possibly influencing soil detachment capacity (Dc), but the vertical heterogeneity of this effect is uncertain. Soil samples were taken from 6 segments (5 m elevation per segment) along a slope profile in the WLFZ of the TGR to clarify the vertical heterogeneity of Dc. Scouring experiments were conducted at 5 slope gradients (17.63%, 26.79%, 36.40%, 46.63%, and 57.74%) and 5 flow rates (10, 15, 20, 25, and 30 L min–1) to determine Dc. The results indicate that the soil properties and biomass parameters of the WLFZ are strongly affected by elevation. Dc fluctuates with increasing elevation, with maximum and minimum average values at elevations of 145-150 m and 165-170 m, respectively. Linear equations accurately describe the relationships between Dc and hydrodynamic parameters. τ, ω, and E perform much better than U. Furthermore, a clear improvement is seen when using the general index of flow intensity to estimate Dc. Dc is significantly negatively correlated with MWD (p < 0.05) and organic matter (p < 0.01) but not significantly correlated with other soil properties (p > 0.05). At elevations of 145-150 m and 170-175 m, rill erodibility was greater than at other elevations. The critical hydraulic parameters were highest in the 165-170 m segments, both showing obviously fluctuation in the vertical direction of slope surface. This research highlighted the vertical heterogeneity of the soil detachment and was helpful to understand the mechanisms of soil detachment processes in the WLFZ of the TGR.


2021 ◽  
Vol 13 (5) ◽  
pp. 1007
Author(s):  
Dingjian Jin ◽  
Jing Li ◽  
Jianhua Gong ◽  
Yi Li ◽  
Zheng Zhao ◽  
...  

The water-level fluctuation zone (WLFZ) of the Three Gorges Reservoir is a serious landslide-prone area. However, current remote sensing methods for landslide mapping and detection in the WLFZ are insufficient because of difficulties in data acquisition and lack of facade information. We proposed a novel shipborne mobile photogrammetry approach for 3D mapping and landslide detection in the WLFZ for the first time, containing a self-designed shipborne hardware platform and a data acquisition and processing workflow. To evaluate the accuracy and usability of the resultant 3D models in the WLFZ, four bundle block adjustment (BBA) control configurations were developed and adopted. In the four configurations, the raw Global Navigation Satellite System (GNSS) data, the raw GNSS data and fixed camera height, the GCPs extracted from aerial photogrammetric products, and the mobile Light Detection and Ranging (LiDAR) point cloud were used. A comprehensive accuracy assessment of the 3D models was conducted, and the comparative results indicated the BBA with GCPs extracted from the aerial photogrammetric products was the most practical configuration (RMSE 2.00 m in plane, RMSE 0.46 m in height), while the BBA with the mobile LiDAR point cloud as a control provided the highest georeferencing accuracy (RMSE 0.59 m in plane, RMSE 0.40 m in height). Subsequently, the landslide detection ability of the proposed approach was compared with multisource remote sensing images through visual interpretation, which showed that the proposed approach provided the highest landslide detection rate and unique advantages in small landslide detection as well as in steep terrains due to the more detailed features of landslides provided by the shipborne 3D models. The approach is an effective and flexible supplement to traditional remote sensing methods.


Sign in / Sign up

Export Citation Format

Share Document