Woody debris stocks in different secondary and primary forests in the subtropical Ailao Mountains, southwest China

2007 ◽  
Vol 23 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Yang Lipan ◽  
Liu Wenyao ◽  
Ma Wenzhang
Landslides ◽  
2018 ◽  
Vol 15 (11) ◽  
pp. 2279-2293 ◽  
Author(s):  
Yong-Jun Tang ◽  
Ze-Min Xu ◽  
Tai-Qiang Yang ◽  
Zhen-Hua Zhou ◽  
Kun Wang ◽  
...  

2017 ◽  
Vol 13 (12) ◽  
pp. 384
Author(s):  
Suspense Averti Ifo ◽  
Mackline Mbemba ◽  
Félix Koubouana ◽  
Stoffenne Binsangou

In order to improve the knowledge of the functioning of tropical rainfall forests in the Congo basin ,a study on the quantification of the stocks of carbon in coarse woody debris was done in Likouala’s area, in Republic of Congo. To achieve this goal,14 squares plots of 50mx50m had installed on the whole study area, including ten plots in primary forest and four in secondary forests. The method used was to make an inventory of woody debris lying on the ground or Log and snags in the different study plots. There sults of this study revealed average stocks of 603.45kg MS.ha -1 in primary forests, 468.64 kg MS.ha-1 in secondaryforestsand392.68 kgMS.ha- 1 in agroforestry, with no significant differences between stocks in primary forests and secondary forests (P = 0.05). In addition this study revealed that carbon stocks varied from one locality to another in all the study area, as well as between the experimental plots (p = 0.005). This study helps to understand that the Chablis played a key role in the production of large woody debris.


2019 ◽  
Vol 13 (2) ◽  
pp. 139-149
Author(s):  
Qiong Cai ◽  
Chengjun Ji ◽  
Xuli Zhou ◽  
Helge Bruelheide ◽  
Wenjing Fang ◽  
...  

Abstract Aims There are different components of carbon (C) pools in a natural forest ecosystem: biomass, soil, litter and woody debris. We asked how these pools changed with elevation in one of China’s ecologically important forest ecosystem, i.e. beech (Fagus L., Fagaceae) forests, and what were the underlying driving factors of such variation. Methods The four C pools in nine beech forests were investigated along an elevational gradient (1095–1930 m) on Mt. Fanjingshan in Guizhou Province, Southwest China. Variance partitioning was used to explore the relative effects of stand age, climate and other factors on C storage. In addition, we compared the four C pools to other beech forests in Guizhou Province and worldwide. Important Findings The total C pools of beech forest ecosystems ranged from 190.5 to 504.3 Mg C ha–1, mainly attributed to biomass C (accounting for 33.7–73.9%) and soil C (accounting for 23.9–65.5%). No more than 4% of ecosystem C pools were stored in woody debris (0.05–3.1%) and litter (0.2–0.7%). Ecosystem C storage increased significantly with elevation, where both the biomass and woody debris C pools increased with elevation, while those of litter and soil exhibited no such trend. For the Guizhou beech forests, climate and stand age were found to be key drivers of the elevational patterns of ecosystem and biomass C storage, while for beech forests globally, stand age was the most important predictor. Compared to beech forests worldwide, beech forests in Guizhou Province displayed a relatively higher biomass C accumulation rate, which may be explained by a much higher precipitation in this area. The present study provides basic data for understanding the C budgets of Chinese beech forests and their possible roles in regional C cycling and emphasizes the general importance of stand age and climate on C accumulation.


2018 ◽  
Author(s):  
Qiong Cai ◽  
Chengjun Ji ◽  
Xuli Zhou ◽  
Wenjing Fang ◽  
Tianli Zheng ◽  
...  

Abstract. There are four components of carbon (C) pools in a natural forest ecosystem: vegetation, soil, litter and woody debris. Quantifying these C pools and their contributions to forest ecosystems is important in understanding C cycling in forests. Here, we investigated these four C pools in nine beech (Fagus L., Fagaceae) forests along an altitudinal gradient in southwest China. We found that the C pools of beech forest ecosystems ranged from 190.7 to 503.9 Mg C ha−1, mainly attributed to vegetation C (accounting for 33.7–73.9 %) and soil C (accounting for 24.6–65.4 %). No more than 4 % of ecosystem C pools were stored in woody debris (0.25–3.4 %) and litter (0.2–0.7 %). Ecosystem C storage increased significantly with altitude, where the vegetation and woody debris C pools increased concomitantly with increasing altitude, while those of litter and soil exhibited no significant variations. The forest stand age was found to be a key driver of such altitudinal patterns, especially for vegetation C storage. The present study provides reliable data for understanding the structure and function of Chinese beech forests, and emphasizes the importance of considering the influence of stand age on C accumulation.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
B Liu ◽  
F Li ◽  
Z Guo ◽  
L Hong ◽  
W Huang ◽  
...  

2009 ◽  
Vol 61 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Mathrubutham Ravikumar ◽  
Kandikere R. Sridhar ◽  
Thangaraju Sivakumar ◽  
Kishore S. Karamchand ◽  
Nallusamy Sivakumar ◽  
...  

Author(s):  
WILLIAM GARDENER

Prince Henri d'Orleans, precluded by French law from serving his country in the profession of arms, had his attention turned early towards exploration. In 1889, accompanied by the experienced traveller Gabriel Bonvalet, he set out from Paris to reach Indo-China overland by way of Central Asia, Tibet and western and south western China. The journey made contributions in the problems of the whereabouts of Lap Nor and the configuration of the then unexplored northern plateau of Tibet; and in botany it produced some species new to science. The party reached Indo-China in 1890. In 1895, having organised an expedition better equipped for topographical survey and for investigations in the fields of natural history and ethnography, Prince Henri set out from Hanoi with the intention of exploring the Mekong through the Chinese province of Yunnan. After proceeding up the left bank of the Salween for a brief part of its course and then alternating between the right and left banks of the Mekong as far up as Tzeku, the party found it advisable to enter Tibet in a north westerly direction through the province of Chamdo and instead crossed the south eastern extremity of the country, the Zayul, by a difficult track which led them to the country of the Hkamti Shans in present day Upper Burma, and thence to India completing a journey of 2000 miles, "1500 of which had been previously untrodden" (Prince Henri). West of the Mekong, the journey established that the Salween, which some geographers had claimed took its rise in or near north western Yunnan, in fact rose well north in Tibet, and that, contrary to previous opinions, the principal headwater of the Irrawaddy rose no further north than latitude 28°30'. Botanical collections were confined to Yunnan, where the tracks permitted mule transport, and they produced a number of species new to science and extended the range of distribution of species already known.


1942 ◽  
Vol 11 (10) ◽  
pp. 116-120
Author(s):  
Hsien-Chin Hu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document