Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater

2016 ◽  
Vol 23 (19) ◽  
pp. 19504-19519 ◽  
Author(s):  
Vassiliki Papaevangelou ◽  
Georgios D. Gikas ◽  
Vassilios A. Tsihrintzis
Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2200
Author(s):  
Georgios D. Gikas ◽  
Vassiliki A. Papaevangelou ◽  
Vassilios A. Tsihrintzis ◽  
Maria Antonopoulou ◽  
Ioannis K. Konstantinou

We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.


Sign in / Sign up

Export Citation Format

Share Document