Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation

2018 ◽  
Vol 25 (23) ◽  
pp. 23294-23306 ◽  
Author(s):  
Praveen Anchupogu ◽  
Lakshmi Narayana Rao ◽  
Balakrishna Banavathu
Author(s):  
Alborz Zehni ◽  
Rahim Khoshbakhti Saray ◽  
Elahe Neshat

In this study, a numerical study is performed by KIVA–CHEMKIN code to investigate the effects of biodiesel addition and exhaust gas recirculation (EGR) on diesel engine premixed charge compression ignition (PCCI) combustion, performance, and emission characteristics. The studies are performed for neat diesel fuel and mixture of 10–40% biodiesel addition at 67%, 50%, and 40% EGR. For this purpose, a multichemistry surrogate mechanism using methyl decanoate (MD) and methyl-9-decenoate (MD9D) is used. The main innovation of this work is analyzing the chemical, thermodynamic, and dilution effects of biodiesel addition as well as different EGR ratios on PCCI combustion behavior. The results show that the main effect of EGR on PCCI combustion of biodiesel blend is related to the high temperature heat release (HTHR), and its effect on low temperature heat release (LTHR) is low. With increasing biodiesel addition, the role of the chemical effect is increased compared to the thermodynamic and dilution effects. Rate of production analysis (ROPA) indicate that for the different biodiesel ratios, the effect of reaction nC7H16 + HO2 = C7H15-2 + H2O2 is more effective on the start of combustion (SOC) compared to the other reactions. For a defined biodiesel addition, with decreasing EGR, total (unburned) hydrocarbon (THC) and CO are decreased, while NOx and indicated specific fuel consumption (ISFC) are increased.


Sign in / Sign up

Export Citation Format

Share Document