scholarly journals Combustion, performance and emission analysis of a diesel engine fueled with methyl esters of Jatropha and fish oil with exhaust gas recirculation

2019 ◽  
Vol 160 ◽  
pp. 404-411 ◽  
Author(s):  
M. Saravana Kumar ◽  
M. Prabhahar ◽  
S. Sendilvelan ◽  
Sanjay Singh ◽  
R. Venkatesh ◽  
...  
Author(s):  
Alborz Zehni ◽  
Rahim Khoshbakhti Saray ◽  
Elahe Neshat

In this study, a numerical study is performed by KIVA–CHEMKIN code to investigate the effects of biodiesel addition and exhaust gas recirculation (EGR) on diesel engine premixed charge compression ignition (PCCI) combustion, performance, and emission characteristics. The studies are performed for neat diesel fuel and mixture of 10–40% biodiesel addition at 67%, 50%, and 40% EGR. For this purpose, a multichemistry surrogate mechanism using methyl decanoate (MD) and methyl-9-decenoate (MD9D) is used. The main innovation of this work is analyzing the chemical, thermodynamic, and dilution effects of biodiesel addition as well as different EGR ratios on PCCI combustion behavior. The results show that the main effect of EGR on PCCI combustion of biodiesel blend is related to the high temperature heat release (HTHR), and its effect on low temperature heat release (LTHR) is low. With increasing biodiesel addition, the role of the chemical effect is increased compared to the thermodynamic and dilution effects. Rate of production analysis (ROPA) indicate that for the different biodiesel ratios, the effect of reaction nC7H16 + HO2 = C7H15-2 + H2O2 is more effective on the start of combustion (SOC) compared to the other reactions. For a defined biodiesel addition, with decreasing EGR, total (unburned) hydrocarbon (THC) and CO are decreased, while NOx and indicated specific fuel consumption (ISFC) are increased.


2015 ◽  
Vol 813-814 ◽  
pp. 819-823 ◽  
Author(s):  
Pavan Bharadwaja Bhaskar ◽  
S. Srihari

In this study the effect on exhaust gases of a diesel engine fuelled by biodiesel and coupling Exhaust Gas Recirculation (EGR) has been done. EGR is a pre-treatment technique to trim down NOx from diesel engines as it is expected to reduce the flame temperature and the oxygen concentration in the combustion chamber. Fossil fuels so-called biodiesel is picked as the blending fuel. Existence of oxygen in Biodiesel aids complete combustion and anticipated to reduce CO and HC emissions. Exhaust Gas Recirculation technique can capably reduce the amount of NOx. EGR may tend to increase the CO and HC emissions, biodiesel which has higher oxygen content is blended to diesel so that it may compensate CO and HC emissions. The performance and emission characteristics of EGR along with biodiesel in a diesel engine are discussed.


Sign in / Sign up

Export Citation Format

Share Document